Abstract:Recent advancements in large language models (LLMs) have accelerated progress toward artificial general intelligence, yet their potential to generate harmful content poses critical safety challenges. Existing alignment methods often struggle to cover diverse safety scenarios and remain vulnerable to adversarial attacks. In this work, we propose Ex-Ante Reasoning Preference Optimization (ERPO), a novel safety alignment framework that equips LLMs with explicit preemptive reasoning through Chain-of-Thought and provides clear evidence for safety judgments by embedding predefined safety rules. Specifically, our approach consists of three stages: first, equipping the model with Ex-Ante reasoning through supervised fine-tuning (SFT) using a constructed reasoning module; second, enhancing safety, usefulness, and efficiency via Direct Preference Optimization (DPO); and third, mitigating inference latency with a length-controlled iterative preference optimization strategy. Experiments on multiple open-source LLMs demonstrate that ERPO significantly enhances safety performance while maintaining response efficiency.
Abstract:This paper explores a new paradigm of optical integrated sensing and communication (O-ISAC). Our investigation reveals that optical communication and optical sensing are two inherently complementary technologies. On the one hand, optical communication provides the necessary illumination for optical sensing. On the other hand, optical sensing provides environmental information for optical communication. These insights form the foundation of a directionless integrated system, which constitutes the first phase of O-ISAC. We further put forth the concept of optical beamforming using the collimating lens, whereby the light emitted by optical sources is concentrated onto the target device. This greatly improves communication rate and sensing accuracy, thanks to remarkably increased light intensity. Simulation results confirm the significant performance gains of our O-ISAC system over a separated sensing and communication system. With the collimating lens, the light intensity arrived at the target object is increased from 1.09% to 78.06%. The sensing accuracy and communication BER are improved by 62.06dB and 65.52dB, respectively.