Abstract:Latent diffusion models have exhibited considerable potential in generative tasks. Watermarking is considered to be an alternative to safeguard the copyright of generative models and prevent their misuse. However, in the context of model distribution scenarios, the accessibility of models to large scale of model users brings new challenges to the security, efficiency and robustness of existing watermark solutions. To address these issues, we propose a secure and efficient watermarking solution. A new security mechanism is designed to prevent watermark leakage and watermark escape, which considers watermark randomness and watermark-model association as two constraints for mandatory watermark injection. To reduce the time cost of training the security module, watermark injection and the security mechanism are decoupled, ensuring that fine-tuning VAE only accomplishes the security mechanism without the burden of learning watermark patterns. A watermark distribution-based verification strategy is proposed to enhance the robustness against diverse attacks in the model distribution scenarios. Experimental results prove that our watermarking consistently outperforms existing six baselines on effectiveness and robustness against ten image processing attacks and adversarial attacks, while enhancing security in the distribution scenarios.
Abstract:Vertical Federated Learning (VFL) has garnered significant attention as a privacy-preserving machine learning framework for sample-aligned feature federation. However, traditional VFL approaches do not address the challenges of class and feature continual learning, resulting in catastrophic forgetting of knowledge from previous tasks. To address the above challenge, we propose a novel vertical federated continual learning method, named Vertical Federated Continual Learning via Evolving Prototype Knowledge (V-LETO), which primarily facilitates the transfer of knowledge from previous tasks through the evolution of prototypes. Specifically, we propose an evolving prototype knowledge method, enabling the global model to retain both previous and current task knowledge. Furthermore, we introduce a model optimization technique that mitigates the forgetting of previous task knowledge by restricting updates to specific parameters of the local model, thereby enhancing overall performance. Extensive experiments conducted in both CIL and FIL settings demonstrate that our method, V-LETO, outperforms the other state-of-the-art methods. For example, our method outperforms the state-of-the-art method by 10.39% and 35.15% for CIL and FIL tasks, respectively. Our code is available at https://anonymous.4open.science/r/V-LETO-0108/README.md.
Abstract:Smart grid, through networked smart meters employing the non-intrusive load monitoring (NILM) technique, can considerably discern the usage patterns of residential appliances. However, this technique also incurs privacy leakage. To address this issue, we propose an innovative scheme based on adversarial attack in this paper. The scheme effectively prevents NILM models from violating appliance-level privacy, while also ensuring accurate billing calculation for users. To achieve this objective, we overcome two primary challenges. First, as NILM models fall under the category of time-series regression models, direct application of traditional adversarial attacks designed for classification tasks is not feasible. To tackle this issue, we formulate a novel adversarial attack problem tailored specifically for NILM and providing a theoretical foundation for utilizing the Jacobian of the NILM model to generate imperceptible perturbations. Leveraging the Jacobian, our scheme can produce perturbations, which effectively misleads the signal prediction of NILM models to safeguard users' appliance-level privacy. The second challenge pertains to fundamental utility requirements, where existing adversarial attack schemes struggle to achieve accurate billing calculation for users. To handle this problem, we introduce an additional constraint, mandating that the sum of added perturbations within a billing period must be precisely zero. Experimental validation on real-world power datasets REDD and UK-DALE demonstrates the efficacy of our proposed solutions, which can significantly amplify the discrepancy between the output of the targeted NILM model and the actual power signal of appliances, and enable accurate billing at the same time. Additionally, our solutions exhibit transferability, making the generated perturbation signal from one target model applicable to other diverse NILM models.
Abstract:The vast, complex, and dynamic nature of social message data has posed challenges to social event detection (SED). Despite considerable effort, these challenges persist, often resulting in inadequately expressive message representations (ineffective) and prolonged learning durations (inefficient). In response to the challenges, this work introduces an unsupervised framework, HyperSED (Hyperbolic SED). Specifically, the proposed framework first models social messages into semantic-based message anchors, and then leverages the structure of the anchor graph and the expressiveness of the hyperbolic space to acquire structure- and geometry-aware anchor representations. Finally, HyperSED builds the partitioning tree of the anchor message graph by incorporating differentiable structural information as the reflection of the detected events. Extensive experiments on public datasets demonstrate HyperSED's competitive performance, along with a substantial improvement in efficiency compared to the current state-of-the-art unsupervised paradigm. Statistically, HyperSED boosts incremental SED by an average of 2%, 2%, and 25% in NMI, AMI, and ARI, respectively; enhancing efficiency by up to 37.41 times and at least 12.10 times, illustrating the advancement of the proposed framework. Our code is publicly available at https://github.com/XiaoyanWork/HyperSED.
Abstract:Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques.
Abstract:The personalization techniques of diffusion models succeed in generating specific concepts but also pose threats to copyright protection and illegal use. Model Watermarking is an effective method to prevent the unauthorized use of subject-driven or style-driven image generation, safeguarding concept copyrights. However, under the goal of concept-oriented protection, current watermarking schemes typically add watermarks to all images rather than applying them in a refined manner targeted at specific concepts. Additionally, the personalization techniques of diffusion models can easily remove watermarks. Existing watermarking methods struggle to achieve fine-grained watermark embedding with a few images of specific concept and prevent removal of watermarks through personalized fine-tuning. Therefore, we introduce a novel concept-oriented watermarking framework that seamlessly embeds imperceptible watermarks into the concept of diffusion models. We conduct extensive experiments and ablation studies to verify our framework. Our code is available at https://anonymous.4open.science/r/Conceptwm-4EB3/.
Abstract:Training social event detection models through federated learning (FedSED) aims to improve participants' performance on the task. However, existing federated learning paradigms are inadequate for achieving FedSED's objective and exhibit limitations in handling the inherent heterogeneity in social data. This paper proposes a personalized federated learning framework with a dual aggregation mechanism for social event detection, namely DAMe. We present a novel local aggregation strategy utilizing Bayesian optimization to incorporate global knowledge while retaining local characteristics. Moreover, we introduce a global aggregation strategy to provide clients with maximum external knowledge of their preferences. In addition, we incorporate a global-local event-centric constraint to prevent local overfitting and ``client-drift''. Experiments within a realistic simulation of a natural federated setting, utilizing six social event datasets spanning six languages and two social media platforms, along with an ablation study, have demonstrated the effectiveness of the proposed framework. Further robustness analyses have shown that DAMe is resistant to injection attacks.
Abstract:The use of a single image restoration framework to achieve multi-task image restoration has garnered significant attention from researchers. However, several practical challenges remain, including meeting the specific and simultaneous demands of different tasks, balancing relationships between tasks, and effectively utilizing task correlations in model design. To address these challenges, this paper explores a multi-expert adaptive selection mechanism. We begin by designing a feature representation method that accounts for both the pixel channel level and the global level, encompassing low-frequency and high-frequency components of the image. Based on this method, we construct a multi-expert selection and ensemble scheme. This scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task. It not only meets the individualized needs of different tasks but also achieves balance and optimization across tasks. By sharing experts, our design promotes interconnections between different tasks, thereby enhancing overall performance and resource utilization. Additionally, the multi-expert mechanism effectively eliminates irrelevant experts, reducing interference from them and further improving the effectiveness and accuracy of image restoration. Experimental results demonstrate that our proposed method is both effective and superior to existing approaches, highlighting its potential for practical applications in multi-task image restoration.
Abstract:Federated learning allows several clients to train one machine learning model jointly without sharing private data, providing privacy protection. However, traditional federated learning is vulnerable to poisoning attacks, which can not only decrease the model performance, but also implant malicious backdoors. In addition, direct submission of local model parameters can also lead to the privacy leakage of the training dataset. In this paper, we aim to build a privacy-preserving and Byzantine-robust federated learning scheme to provide an environment with no vandalism (NoV) against attacks from malicious participants. Specifically, we construct a model filter for poisoned local models, protecting the global model from data and model poisoning attacks. This model filter combines zero-knowledge proofs to provide further privacy protection. Then, we adopt secret sharing to provide verifiable secure aggregation, removing malicious clients that disrupting the aggregation process. Our formal analysis proves that NoV can protect data privacy and weed out Byzantine attackers. Our experiments illustrate that NoV can effectively address data and model poisoning attacks, including PGD, and outperforms other related schemes.
Abstract:Recent booming development of Generative Artificial Intelligence (GenAI) has facilitated an emerging model commercialization for the purpose of reinforcement on model performance, such as licensing or trading Deep Neural Network (DNN) models. However, DNN model trading may trigger concerns of the unauthorized replications or misuses over the model, so that the benefit of the model ownership will be violated. Model identity auditing is a challenging issue in protecting intellectual property of DNN models and verifying the integrity and ownership of models for guaranteeing trusts in transactions is one of the critical obstacles. In this paper, we focus on the above issue and propose a novel Accumulator-enabled Auditing for Distributed Identity of DNN Model (A2-DIDM) that utilizes blockchain and zero-knowledge techniques to protect data and function privacy while ensuring the lightweight on-chain ownership verification. The proposed model presents a scheme of identity records via configuring model weight checkpoints with corresponding zero-knowledge proofs, which incorporates predicates to capture incremental state changes in model weight checkpoints. Our scheme ensures both computational integrity of DNN training process and programmability, so that the uniqueness of the weight checkpoint sequence in a DNN model is preserved, ensuring the correctness of the model identity auditing. In addition, A2-DIDM also addresses privacy protections in distributed identity via a proposed method of accumulators. We systematically analyze the security and robustness of our proposed model and further evaluate the effectiveness and usability of auditing DNN model identities.