Abstract:Training social event detection models through federated learning (FedSED) aims to improve participants' performance on the task. However, existing federated learning paradigms are inadequate for achieving FedSED's objective and exhibit limitations in handling the inherent heterogeneity in social data. This paper proposes a personalized federated learning framework with a dual aggregation mechanism for social event detection, namely DAMe. We present a novel local aggregation strategy utilizing Bayesian optimization to incorporate global knowledge while retaining local characteristics. Moreover, we introduce a global aggregation strategy to provide clients with maximum external knowledge of their preferences. In addition, we incorporate a global-local event-centric constraint to prevent local overfitting and ``client-drift''. Experiments within a realistic simulation of a natural federated setting, utilizing six social event datasets spanning six languages and two social media platforms, along with an ablation study, have demonstrated the effectiveness of the proposed framework. Further robustness analyses have shown that DAMe is resistant to injection attacks.
Abstract:The use of a single image restoration framework to achieve multi-task image restoration has garnered significant attention from researchers. However, several practical challenges remain, including meeting the specific and simultaneous demands of different tasks, balancing relationships between tasks, and effectively utilizing task correlations in model design. To address these challenges, this paper explores a multi-expert adaptive selection mechanism. We begin by designing a feature representation method that accounts for both the pixel channel level and the global level, encompassing low-frequency and high-frequency components of the image. Based on this method, we construct a multi-expert selection and ensemble scheme. This scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task. It not only meets the individualized needs of different tasks but also achieves balance and optimization across tasks. By sharing experts, our design promotes interconnections between different tasks, thereby enhancing overall performance and resource utilization. Additionally, the multi-expert mechanism effectively eliminates irrelevant experts, reducing interference from them and further improving the effectiveness and accuracy of image restoration. Experimental results demonstrate that our proposed method is both effective and superior to existing approaches, highlighting its potential for practical applications in multi-task image restoration.
Abstract:Federated learning allows several clients to train one machine learning model jointly without sharing private data, providing privacy protection. However, traditional federated learning is vulnerable to poisoning attacks, which can not only decrease the model performance, but also implant malicious backdoors. In addition, direct submission of local model parameters can also lead to the privacy leakage of the training dataset. In this paper, we aim to build a privacy-preserving and Byzantine-robust federated learning scheme to provide an environment with no vandalism (NoV) against attacks from malicious participants. Specifically, we construct a model filter for poisoned local models, protecting the global model from data and model poisoning attacks. This model filter combines zero-knowledge proofs to provide further privacy protection. Then, we adopt secret sharing to provide verifiable secure aggregation, removing malicious clients that disrupting the aggregation process. Our formal analysis proves that NoV can protect data privacy and weed out Byzantine attackers. Our experiments illustrate that NoV can effectively address data and model poisoning attacks, including PGD, and outperforms other related schemes.
Abstract:Recent booming development of Generative Artificial Intelligence (GenAI) has facilitated an emerging model commercialization for the purpose of reinforcement on model performance, such as licensing or trading Deep Neural Network (DNN) models. However, DNN model trading may trigger concerns of the unauthorized replications or misuses over the model, so that the benefit of the model ownership will be violated. Model identity auditing is a challenging issue in protecting intellectual property of DNN models and verifying the integrity and ownership of models for guaranteeing trusts in transactions is one of the critical obstacles. In this paper, we focus on the above issue and propose a novel Accumulator-enabled Auditing for Distributed Identity of DNN Model (A2-DIDM) that utilizes blockchain and zero-knowledge techniques to protect data and function privacy while ensuring the lightweight on-chain ownership verification. The proposed model presents a scheme of identity records via configuring model weight checkpoints with corresponding zero-knowledge proofs, which incorporates predicates to capture incremental state changes in model weight checkpoints. Our scheme ensures both computational integrity of DNN training process and programmability, so that the uniqueness of the weight checkpoint sequence in a DNN model is preserved, ensuring the correctness of the model identity auditing. In addition, A2-DIDM also addresses privacy protections in distributed identity via a proposed method of accumulators. We systematically analyze the security and robustness of our proposed model and further evaluate the effectiveness and usability of auditing DNN model identities.
Abstract:Segmentation of organs of interest in medical CT images is beneficial for diagnosis of diseases. Though recent methods based on Fully Convolutional Neural Networks (F-CNNs) have shown success in many segmentation tasks, fusing features from images with different scales is still a challenge: (1) Due to the lack of spatial awareness, F-CNNs share the same weights at different spatial locations. (2) F-CNNs can only obtain surrounding information through local receptive fields. To address the above challenge, we propose a new segmentation framework based on attention mechanisms, named MFA-Net (Multi-Scale Feature Fusion Attention Network). The proposed framework can learn more meaningful feature maps among multiple scales and result in more accurate automatic segmentation. We compare our proposed MFA-Net with SOTA methods on two 2D liver CT datasets. The experimental results show that our MFA-Net produces more precise segmentation on images with different scales.
Abstract:Latent Diffusion Models (LDMs) enable a wide range of applications but raise ethical concerns regarding illegal utilization.Adding watermarks to generative model outputs is a vital technique employed for copyright tracking and mitigating potential risks associated with AI-generated content. However, post-hoc watermarking techniques are susceptible to evasion. Existing watermarking methods for LDMs can only embed fixed messages. Watermark message alteration requires model retraining. The stability of the watermark is influenced by model updates and iterations. Furthermore, the current reconstruction-based watermark removal techniques utilizing variational autoencoders (VAE) and diffusion models have the capability to remove a significant portion of watermarks. Therefore, we propose a novel technique called DiffuseTrace. The goal is to embed invisible watermarks in all generated images for future detection semantically. The method establishes a unified representation of the initial latent variables and the watermark information through training an encoder-decoder model. The watermark information is embedded into the initial latent variables through the encoder and integrated into the sampling process. The watermark information is extracted by reversing the diffusion process and utilizing the decoder. DiffuseTrace does not rely on fine-tuning of the diffusion model components. The watermark is embedded into the image space semantically without compromising image quality. The encoder-decoder can be utilized as a plug-in in arbitrary diffusion models. We validate through experiments the effectiveness and flexibility of DiffuseTrace. DiffuseTrace holds an unprecedented advantage in combating the latest attacks based on variational autoencoders and Diffusion Models.
Abstract:Large Language Models (LLMs) have revolutionized open-domain dialogue agents but encounter challenges in multi-character role-playing (MCRP) scenarios. To address the issue, we present Neeko, an innovative framework designed for efficient multiple characters imitation. Unlike existing methods, Neeko employs a dynamic low-rank adapter (LoRA) strategy, enabling it to adapt seamlessly to diverse characters. Our framework breaks down the role-playing process into agent pre-training, multiple characters playing, and character incremental learning, effectively handling both seen and unseen roles. This dynamic approach, coupled with distinct LoRA blocks for each character, enhances Neeko's adaptability to unique attributes, personalities, and speaking patterns. As a result, Neeko demonstrates superior performance in MCRP over most existing methods, offering more engaging and versatile user interaction experiences. Code and data are available at https://github.com/weiyifan1023/Neeko.
Abstract:Visible-infrared person re-identification (VIReID) primarily deals with matching identities across person images from different modalities. Due to the modality gap between visible and infrared images, cross-modality identity matching poses significant challenges. Recognizing that high-level semantics of pedestrian appearance, such as gender, shape, and clothing style, remain consistent across modalities, this paper intends to bridge the modality gap by infusing visual features with high-level semantics. Given the capability of CLIP to sense high-level semantic information corresponding to visual representations, we explore the application of CLIP within the domain of VIReID. Consequently, we propose a CLIP-Driven Semantic Discovery Network (CSDN) that consists of Modality-specific Prompt Learner, Semantic Information Integration (SII), and High-level Semantic Embedding (HSE). Specifically, considering the diversity stemming from modality discrepancies in language descriptions, we devise bimodal learnable text tokens to capture modality-private semantic information for visible and infrared images, respectively. Additionally, acknowledging the complementary nature of semantic details across different modalities, we integrate text features from the bimodal language descriptions to achieve comprehensive semantics. Finally, we establish a connection between the integrated text features and the visual features across modalities. This process embed rich high-level semantic information into visual representations, thereby promoting the modality invariance of visual representations. The effectiveness and superiority of our proposed CSDN over existing methods have been substantiated through experimental evaluations on multiple widely used benchmarks. The code will be released at \url{https://github.com/nengdong96/CSDN}.
Abstract:Distributed machine learning enables parallel training of extensive datasets by delegating computing tasks across multiple workers. Despite the cost reduction benefits of distributed machine learning, the dissemination of final model weights often leads to potential conflicts over model ownership as workers struggle to substantiate their involvement in the training computation. To address the above ownership issues and prevent accidental failures and malicious attacks, verifying the computational integrity and effectiveness of workers becomes particularly crucial in distributed machine learning. In this paper, we proposed a novel binary linear tree commitment-based ownership protection model to ensure computational integrity with limited overhead and concise proof. Due to the frequent updates of parameters during training, our commitment scheme introduces a maintainable tree structure to reduce the costs of updating proofs. Distinguished from SNARK-based verifiable computation, our model achieves efficient proof aggregation by leveraging inner product arguments. Furthermore, proofs of model weights are watermarked by worker identity keys to prevent commitments from being forged or duplicated. The performance analysis and comparison with SNARK-based hash commitments validate the efficacy of our model in preserving computational integrity within distributed machine learning.
Abstract:With the rapid advancement of artificial intelligence technology, the usage of machine learning models is gradually becoming part of our daily lives. High-quality models rely not only on efficient optimization algorithms but also on the training and learning processes built upon vast amounts of data and computational power. However, in practice, due to various challenges such as limited computational resources and data privacy concerns, users in need of models often cannot train machine learning models locally. This has led them to explore alternative approaches such as outsourced learning and federated learning. While these methods address the feasibility of model training effectively, they introduce concerns about the trustworthiness of the training process since computations are not performed locally. Similarly, there are trustworthiness issues associated with outsourced model inference. These two problems can be summarized as the trustworthiness problem of model computations: How can one verify that the results computed by other participants are derived according to the specified algorithm, model, and input data? To address this challenge, verifiable machine learning (VML) has emerged. This paper presents a comprehensive survey of zero-knowledge proof-based verifiable machine learning (ZKP-VML) technology. We first analyze the potential verifiability issues that may exist in different machine learning scenarios. Subsequently, we provide a formal definition of ZKP-VML. We then conduct a detailed analysis and classification of existing works based on their technical approaches. Finally, we discuss the key challenges and future directions in the field of ZKP-based VML.