Abstract:Latent diffusion models have exhibited considerable potential in generative tasks. Watermarking is considered to be an alternative to safeguard the copyright of generative models and prevent their misuse. However, in the context of model distribution scenarios, the accessibility of models to large scale of model users brings new challenges to the security, efficiency and robustness of existing watermark solutions. To address these issues, we propose a secure and efficient watermarking solution. A new security mechanism is designed to prevent watermark leakage and watermark escape, which considers watermark randomness and watermark-model association as two constraints for mandatory watermark injection. To reduce the time cost of training the security module, watermark injection and the security mechanism are decoupled, ensuring that fine-tuning VAE only accomplishes the security mechanism without the burden of learning watermark patterns. A watermark distribution-based verification strategy is proposed to enhance the robustness against diverse attacks in the model distribution scenarios. Experimental results prove that our watermarking consistently outperforms existing six baselines on effectiveness and robustness against ten image processing attacks and adversarial attacks, while enhancing security in the distribution scenarios.
Abstract:The personalization techniques of diffusion models succeed in generating specific concepts but also pose threats to copyright protection and illegal use. Model Watermarking is an effective method to prevent the unauthorized use of subject-driven or style-driven image generation, safeguarding concept copyrights. However, under the goal of concept-oriented protection, current watermarking schemes typically add watermarks to all images rather than applying them in a refined manner targeted at specific concepts. Additionally, the personalization techniques of diffusion models can easily remove watermarks. Existing watermarking methods struggle to achieve fine-grained watermark embedding with a few images of specific concept and prevent removal of watermarks through personalized fine-tuning. Therefore, we introduce a novel concept-oriented watermarking framework that seamlessly embeds imperceptible watermarks into the concept of diffusion models. We conduct extensive experiments and ablation studies to verify our framework. Our code is available at https://anonymous.4open.science/r/Conceptwm-4EB3/.
Abstract:Latent Diffusion Models (LDMs) enable a wide range of applications but raise ethical concerns regarding illegal utilization.Adding watermarks to generative model outputs is a vital technique employed for copyright tracking and mitigating potential risks associated with AI-generated content. However, post-hoc watermarking techniques are susceptible to evasion. Existing watermarking methods for LDMs can only embed fixed messages. Watermark message alteration requires model retraining. The stability of the watermark is influenced by model updates and iterations. Furthermore, the current reconstruction-based watermark removal techniques utilizing variational autoencoders (VAE) and diffusion models have the capability to remove a significant portion of watermarks. Therefore, we propose a novel technique called DiffuseTrace. The goal is to embed invisible watermarks in all generated images for future detection semantically. The method establishes a unified representation of the initial latent variables and the watermark information through training an encoder-decoder model. The watermark information is embedded into the initial latent variables through the encoder and integrated into the sampling process. The watermark information is extracted by reversing the diffusion process and utilizing the decoder. DiffuseTrace does not rely on fine-tuning of the diffusion model components. The watermark is embedded into the image space semantically without compromising image quality. The encoder-decoder can be utilized as a plug-in in arbitrary diffusion models. We validate through experiments the effectiveness and flexibility of DiffuseTrace. DiffuseTrace holds an unprecedented advantage in combating the latest attacks based on variational autoencoders and Diffusion Models.