Sherman
Abstract:Integrated sensing and communication (ISAC) uses the same software and hardware resources to achieve both communication and sensing functionalities. Thus, it stands as one of the core technologies of 6G and has garnered significant attention in recent years. In ISAC systems, a variety of machine learning models are trained to analyze and identify signal patterns, thereby ensuring reliable sensing and communications. However, considering factors such as communication rates, costs, and privacy, collecting sufficient training data from various ISAC scenarios for these models is impractical. Hence, this paper introduces a generative AI (GenAI) enabled robust data augmentation scheme. The scheme first employs a conditioned diffusion model trained on a limited amount of collected CSI data to generate new samples, thereby expanding the sample quantity. Building on this, the scheme further utilizes another diffusion model to enhance the sample quality, thereby facilitating the data augmentation in scenarios where the original sensing data is insufficient and unevenly distributed. Moreover, we propose a novel algorithm to estimate the acceleration and jerk of signal propagation path length changes from CSI. We then use the proposed scheme to enhance the estimated parameters and detect the number of targets based on the enhanced data. The evaluation reveals that our scheme improves the detection performance by up to 70%, demonstrating reliability and robustness, which supports the deployment and practical use of the ISAC network.
Abstract:Due to massive computational demands of large generative models, AI-Generated Content (AIGC) can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content generation for resource-constrained users. However, such a paradigm faces two significant challenges: 1) raw prompts (i.e., the task description from users) often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources given the heterogeneity of AIGC tasks. To address these challenges, we propose an intelligent mobile AIGC service scheme. Firstly, we develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation through small-scale expert demonstrations. Secondly, we formulate a dynamic mobile AIGC service provisioning problem that jointly optimizes the number of inference trials and transmission power allocation. Then, we propose the Diffusion-Enhanced Deep Deterministic Policy Gradient (D3PG) algorithm to solve the problem. By incorporating the diffusion process into Deep Reinforcement Learning (DRL) architecture, the environment exploration capability can be improved, thus adapting to varying mobile AIGC scenarios. Extensive experimental results demonstrate that our prompt engineering approach improves single-round generation success probability by 6.3 times, while D3PG increases the user service experience by 67.8% compared to baseline DRL approaches.
Abstract:This paper proposes a UAV-assisted forwarding system based on distributed beamforming to enhance age of information (AoI) in Internet of Things (IoT). Specifically, UAVs collect and relay data between sensor nodes (SNs) and the remote base station (BS). However, flight delays increase the AoI and degrade the network performance. To mitigate this, we adopt distributed beamforming to extend the communication range, reduce the flight frequency and ensure the continuous data relay and efficient energy utilization. Then, we formulate an optimization problem to minimize AoI and UAV energy consumption, by jointly optimizing the UAV trajectories and communication schedules. The problem is non-convex and with high dynamic, and thus we propose a deep reinforcement learning (DRL)-based algorithm to solve the problem, thereby enhancing the stability and accelerate convergence speed. Simulation results show that the proposed algorithm effectively addresses the problem and outperforms other benchmark algorithms.
Abstract:Employing self-supervised learning (SSL) methodologies assumes par-amount significance in handling unlabeled polyp datasets when building deep learning-based automatic polyp segmentation models. However, the intricate privacy dynamics surrounding medical data often preclude seamless data sharing among disparate medical centers. Federated learning (FL) emerges as a formidable solution to this privacy conundrum, yet within the realm of FL, optimizing model generalization stands as a pressing imperative. Robust generalization capabilities are imperative to ensure the model's efficacy across diverse geographical domains post-training on localized client datasets. In this paper, a Federated self-supervised Domain Generalization method is proposed to enhance the generalization capacity of federated and Label-efficient intestinal polyp segmentation, named LFDG. Based on a classical SSL method, DropPos, LFDG proposes an adversarial learning-based data augmentation method (SSADA) to enhance the data diversity. LFDG further proposes a relaxation module based on Source-reconstruction and Augmentation-masking (SRAM) to maintain stability in feature learning. We have validated LFDG on polyp images from six medical centers. The performance of our method achieves 3.80% and 3.92% better than the baseline and other recent FL methods and SSL methods, respectively.
Abstract:Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) and data collection (DC) have been popular research issues. Different from existing works that consider MEC and DC scenarios separately, this paper investigates a multi-UAV-assisted joint MEC-DC system. Specifically, we formulate a joint optimization problem to minimize the MEC latency and maximize the collected data volume. This problem can be classified as a non-convex mixed integer programming problem that exhibits long-term optimization and dynamics. Thus, we propose a deep reinforcement learning-based approach that jointly optimizes the UAV movement, user transmit power, and user association in real time to solve the problem efficiently. Specifically, we reformulate the optimization problem into an action space-reduced Markov decision process (MDP) and optimize the user association by using a two-phase matching-based association (TMA) strategy. Subsequently, we propose a soft actor-critic (SAC)-based approach that integrates the proposed TMA strategy (SAC-TMA) to solve the formulated joint optimization problem collaboratively. Simulation results demonstrate that the proposed SAC-TMA is able to coordinate the two subsystems and can effectively reduce the system latency and improve the data collection volume compared with other benchmark algorithms.
Abstract:Multi-class cell segmentation in high-resolution gigapixel whole slide images (WSI) is crucial for various clinical applications. However, training such models typically requires labor-intensive, pixel-wise annotations by domain experts. Recent efforts have democratized this process by involving lay annotators without medical expertise. However, conventional non-agent-based approaches struggle to handle annotation noise adaptively, as they lack mechanisms to mitigate false positives (FP) and false negatives (FN) at both the image-feature and pixel levels. In this paper, we propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process. The Consensus Matrix defines regions where both the AI and annotators agree on cell and non-cell annotations, which are prioritized with stronger supervision. Conversely, areas of disagreement are adaptively weighted based on their feature similarity to high-confidence agreement regions, with more similar regions receiving greater attention. Additionally, contrastive learning is employed to separate features of noisy regions from those of reliable agreement regions by maximizing their dissimilarity. This paradigm enables the AI to iteratively refine noisy labels, enhancing its robustness. Validated on one real-world lay-annotated cell dataset and two simulated noisy datasets, our method demonstrates improved segmentation performance, effectively correcting FP and FN errors and showcasing its potential for training robust models on noisy datasets. The official implementation and cell annotations are publicly available at https://github.com/ddrrnn123/CASC-AI.
Abstract:Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications. However, the limited onboard energy and antenna power of a UAV restrict its communication range and transmission capability. To address these limitations, this work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users, under interference from non-associated BSs and dynamic channel conditions. Specifically, we introduce a memory-based random walk model to more accurately depict the mobility patterns of terrestrial mobile users. Following this, we formulate a multi-objective optimization problem (MOP) focused on maximizing the transmission rate while minimizing the flight energy consumption of the UAV swarm. Given the NP-hard nature of the formulated MOP and the highly dynamic environment, we transform this problem into a multi-objective Markov decision process and propose an improved evolutionary multi-objective reinforcement learning algorithm. Specifically, this algorithm introduces an evolutionary learning approach to obtain the approximate Pareto set for the formulated MOP. Moreover, the algorithm incorporates a long short-term memory network and hyper-sphere-based task selection method to discern the movement patterns of terrestrial mobile users and improve the diversity of the obtained Pareto set. Simulation results demonstrate that the proposed method effectively generates a diverse range of non-dominated policies and outperforms existing methods. Additional simulations demonstrate the scalability and robustness of the proposed CB-based method under different system parameters and various unexpected circumstances.
Abstract:Lyapunov optimization theory has recently emerged as a powerful mathematical framework for solving complex stochastic optimization problems by transforming long-term objectives into a sequence of real-time short-term decisions while ensuring system stability. This theory is particularly valuable in unmanned aerial vehicle (UAV)-based low-altitude economy (LAE) networking scenarios, where it could effectively address inherent challenges of dynamic network conditions, multiple optimization objectives, and stability requirements. Recently, generative artificial intelligence (GenAI) has garnered significant attention for its unprecedented capability to generate diverse digital content. Extending beyond content generation, in this paper, we propose a framework integrating generative diffusion models with reinforcement learning to address Lyapunov optimization problems in UAV-based LAE networking. We begin by introducing the fundamentals of Lyapunov optimization theory and analyzing the limitations of both conventional methods and traditional AI-enabled approaches. We then examine various GenAI models and comprehensively analyze their potential contributions to Lyapunov optimization. Subsequently, we develop a Lyapunov-guided generative diffusion model-based reinforcement learning framework and validate its effectiveness through a UAV-based LAE networking case study. Finally, we outline several directions for future research.
Abstract:Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas. However, extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks. This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle (UAV) to ensure data security at the physical layer. Since such a system requires trade-off policies that balance the secrecy rate and energy consumption of the UAV to meet evolving scenario demands, we formulate a secure satellite-maritime communication multi-objective optimization problem (SSMCMOP). In order to solve the dynamic and long-term optimization problem, we reformulate it into a Markov decision process. We then propose a transformer-enhanced soft actor critic (TransSAC) algorithm, which is a generative artificial intelligence-enable deep reinforcement learning approach to solve the reformulated problem, so that capturing global dependencies and diversely exploring weights. Simulation results demonstrate that the TransSAC outperforms various baselines, and achieves an optimal secrecy rate while effectively minimizing the energy consumption of the UAV. Moreover, the results find more suitable constraint values for the system.
Abstract:The proliferation of Internet of Things (IoT) devices and the advent of 6G technologies have introduced computationally intensive tasks that often surpass the processing capabilities of user devices. Efficient and secure resource allocation in serverless multi-cloud edge computing environments is essential for supporting these demands and advancing distributed computing. However, existing solutions frequently struggle with the complexity of multi-cloud infrastructures, robust security integration, and effective application of traditional deep reinforcement learning (DRL) techniques under system constraints. To address these challenges, we present SARMTO, a novel framework that integrates an action-constrained DRL model. SARMTO dynamically balances resource allocation, task offloading, security, and performance by utilizing a Markov decision process formulation, an adaptive security mechanism, and sophisticated optimization techniques. Extensive simulations across varying scenarios, including different task loads, data sizes, and MEC capacities, show that SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs and a 41.5% improvement in energy efficiency over state-of-the-art methods. These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments, opening the door to more efficient and secure IoT and edge computing applications.