Abstract:By harnessing the delay-Doppler (DD) resource domain, orthogonal time-frequency space (OTFS) substantially improves the communication performance under high-mobility scenarios by maintaining quasi-time-invariant channel characteristics. However, conventional multiple access (MA) techniques fail to efficiently support OTFS in the face of diverse communication requirements. Recently, multi-dimensional MA (MDMA) has emerged as a flexible channel access technique by elastically exploiting multi-domain resources for tailored service provision. Therefore, we conceive an elastic multi-domain resource utilization mechanism for a novel multi-user OTFS-MDMA system by leveraging user-specific channel characteristics across the DD, power, and spatial resource domains. Specifically, we divide all DD resource bins into separate subregions called DD resource slots (RSs), each of which supports a fraction of users, thus reducing the multi-user interference. Then, the most suitable MA, including orthogonal, non-orthogonal, or spatial division MA (OMA/ NOMA/ SDMA), will be selected with each RS based on the interference levels in the power and spatial domains, thus enhancing the spectrum efficiency. Then, we jointly optimize the user assignment, access scheme selection, and power allocation in all DD RSs to maximize the weighted sum-rate subject to their minimum rate and various practical constraints. Since this results in a non-convex problem, we develop a dynamic programming and monotonic optimization (DPMO) method to find the globally optimal solution in the special case of disregarding rate constraints. Subsequently, we apply a low-complexity algorithm to find sub-optimal solutions in general cases.
Abstract:Due to the distinct objectives and multipath utilization mechanisms between the communication module and radar module, the system design of integrated sensing and communication (ISAC) necessitates two types of channel state information (CSI), i.e., communication CSI representing the whole channel gain and phase shifts, and radar CSI exclusively focused on target mobility and position information. However, current ISAC systems apply an identical mechanism to estimate both types of CSI at the same predetermined estimation interval, leading to significant overhead and compromised performances. Therefore, this paper proposes an intermittent communication and radar CSI estimation scheme with adaptive intervals for individual users/targets, where both types of CSI can be predicted using channel temporal correlations for cost reduction or re-estimated via training signal transmission for improved estimation accuracy. Specifically, we jointly optimize the binary CSI re-estimation/prediction decisions and transmit beamforming matrices for individual users/targets to maximize communication transmission rates and minimize radar tracking errors and costs in a multiple-input single-output (MISO) ISAC system. Unfortunately, this problem has causality issues because it requires comparing system performances under re-estimated CSI and predicted CSI during the optimization. Additionally, the binary decision makes the joint design a mixed integer nonlinear programming (MINLP) problem, resulting in high complexity when using conventional optimization algorithms. Therefore, we propose a deep reinforcement online learning (DROL) framework that first implements an online deep neural network (DNN) to learn the binary CSI updating decisions from the experiences. Given the learned decisions, we propose an efficient algorithm to solve the remaining beamforming design problem efficiently.
Abstract:Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.
Abstract:Integrated sensing and communication (ISAC) is viewed as a key technology in future wireless networks. One of the main challenges in realizing ISAC is developing dual-functional waveforms that can communicate with communication receivers and perform radar sensing simultaneously. In this paper, we consider the joint design of a dual-functional orthogonal time-frequency space (OTFS) signal and a receiving filter for the ISAC system. The problem of ISAC waveform design is formulated as the minimization of the weighted integrated sidelobe level (WISL) of the ambiguity function and the interference term from ISAC waveform, with constraints on signal-to-noise ratio loss. The majorization-minimization algorithm combined with alternating iterative minimization is implemented to solve the optimization problem. Simulation results show that the WISL and the interference term can be significantly decreased to guarantee achievable data rates and detection performance.
Abstract:Task-oriented semantic communications (TSC) enhance radio resource efficiency by transmitting task-relevant semantic information. However, current research often overlooks the inherent semantic distinctions among encoded features. Due to unavoidable channel variations from time and frequency-selective fading, semantically sensitive feature units could be more susceptible to erroneous inference if corrupted by dynamic channels. Therefore, this letter introduces a unified channel-resilient TSC framework via information bottleneck. This framework complements existing TSC approaches by controlling information flow to capture fine-grained feature-level semantic robustness. Experiments on a case study for real-time subchannel allocation validate the framework's effectiveness.
Abstract:Driven by the ever-increasing requirements of ultra-high spectral efficiency, ultra-low latency, and massive connectivity, the forefront of wireless research calls for the design of advanced next generation multiple access schemes to facilitate provisioning of these stringent demands. This inspires the embrace of non-orthogonal multiple access (NOMA) in future wireless communication networks. Nevertheless, the support of massive access via NOMA leads to additional security threats, due to the open nature of the air interface, the broadcast characteristic of radio propagation as well as intertwined relationship among paired NOMA users. To address this specific challenge, the superimposed transmission of NOMA can be explored as new opportunities for security aware design, for example, multiuser interference inherent in NOMA can be constructively engineered to benefit communication secrecy and privacy. The purpose of this tutorial is to provide a comprehensive overview on the state-of-the-art physical layer security techniques that guarantee wireless security and privacy for NOMA networks, along with the opportunities, technical challenges, and future research trends.
Abstract:Hierarchical federated learning (HFL) shows great advantages over conventional two-layer federated learning (FL) in reducing network overhead and interaction latency while still retaining the data privacy of distributed FL clients. However, the communication and energy overhead still pose a bottleneck for HFL performance, especially as the number of clients raises dramatically. To tackle this issue, we propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation in this paper, aiming to minimize the total cost of time and energy at each HFL global round. Specifically, we first propose a novel fuzzy logic based client orchestration policy considering client heterogenerity in multiple aspects, including channel quality, data quantity and model staleness. Subsequently, given the fuzzy based client-edge association, a joint edge server scheduling and resource allocation problem is formulated. Utilizing problem decomposition, we firstly derive the closed-form solution for the edge server scheduling subproblem via the penalty dual decomposition (PDD) method. Next, a deep deterministic policy gradient (DDPG) based algorithm is proposed to tackle the resource allocation subproblem considering time-varying environments. Finally, extensive simulations demonstrate that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
Abstract:Direction of arrival (DOA) estimation is an important research in the area of array signal processing, and has been studied for decades. High resolution DOA estimation requires large array aperture, which leads to the increase of hardware cost. Besides, high accuracy DOA estimation methods usually have high computational complexity. In this paper, the problem of decreasing the hardware cost and algorithm complexity is addressed. First, considering the ability of flexible controlling the electromagnetic waves and low-cost, an intelligent reconfigurable surface (IRS)-aided low-cost passive direction finding (LPDF) system is developed, where only one fully functional receiving channel is adopted. Then, the sparsity of targets direction in the spatial domain is exploited by formulating an atomic norm minimization (ANM) problem to estimate the DOA. Traditionally, solving ANM problem is complex and cannot be realized efficiently. Hence, a novel nonconvex-based ANM (NC-ANM) method is proposed by gradient threshold iteration, where a perturbation is introduced to avoid falling into saddle points. The theoretical analysis for the convergence of the NC-ANM method is also given. Moreover, the corresponding Cram\'er-Rao lower bound (CRLB) in the LPDF system is derived, and taken as the referred bound of the DOA estimation. Simulation results show that the proposed method outperforms the compared methods in the DOA estimation with lower computational complexity in the LPDF system.
Abstract:Simultaneous transmission and reflection-reconfigurable intelligent surface (STAR-RIS) can provide expanded coverage compared with the conventional reflection-only RIS. This paper exploits the energy efficient potential of STAR-RIS in a multiple-input and multiple-output (MIMO) enabled non-orthogonal multiple access (NOMA) system. Specifically, we mainly focus on energy-efficient resource allocation with MIMO technology in the STAR-RIS assisted NOMA network. To maximize the system energy efficiency, we propose an algorithm to optimize the transmit beamforming and the phases of the low-cost passive elements on the STAR-RIS alternatively until the convergence. Specifically, we first decompose the formulated energy efficiency problem into beamforming and phase shift optimization problems. To efficiently address the non-convex beamforming optimization problem, we exploit signal alignment and zero-forcing precoding methods in each user pair to decompose MIMO-NOMA channels into single-antenna NOMA channels. Then, the Dinkelbach approach and dual decomposition are utilized to optimize the beamforming vectors. In order to solve non-convex phase shift optimization problem, we propose a successive convex approximation (SCA) based method to efficiently obtain the optimized phase shift of STAR-RIS. Simulation results demonstrate that the proposed algorithm with NOMA technology can yield superior energy efficiency performance over the orthogonal multiple access (OMA) scheme and the random phase shift scheme.
Abstract:Deep learning-based physical-layer secret key generation (PKG) has been used to overcome the imperfect uplink/downlink channel reciprocity in frequency division duplexing (FDD) orthogonal frequency division multiplexing (OFDM) systems. However, existing efforts have focused on key generation for users in a specific environment where the training samples and test samples obey the same distribution, which is unrealistic for real world applications. This paper formulates the PKG problem in multiple environments as a learning-based problem by learning the knowledge such as data and models from known environments to generate keys quickly and efficiently in multiple new environments. Specifically, we propose deep transfer learning (DTL) and meta-learning-based channel feature mapping algorithms for key generation. The two algorithms use different training methods to pre-train the model in the known environments, and then quickly adapt and deploy the model to new environments. Simulation results show that compared with the methods without adaptation, the DTL and meta-learning algorithms both can improve the performance of generated keys. In addition, the complexity analysis shows that the meta-learning algorithm can achieve better performance than the DTL algorithm with less time, lower CPU and GPU resources.