Abstract:Early detection through imaging and accurate diagnosis is crucial in mitigating the high mortality rate associated with breast cancer. However, locating tumors from low-resolution and high-noise medical images is extremely challenging. Therefore, this paper proposes a novel PGDiffSeg (Prior-Guided Diffusion Denoising Model with Parameter-Shared Attention) that applies diffusion denoising methods to breast cancer medical image segmentation, accurately recovering the affected areas from Gaussian noise. Firstly, we design a parallel pipeline for noise processing and semantic information processing and propose a parameter-shared attention module (PSA) in multi-layer that seamlessly integrates these two pipelines. This integration empowers PGDiffSeg to incorporate semantic details at multiple levels during the denoising process, producing highly accurate segmentation maps. Secondly, we introduce a guided strategy that leverages prior knowledge to simulate the decision-making process of medical professionals, thereby enhancing the model's ability to locate tumor positions precisely. Finally, we provide the first-ever discussion on the interpretability of the generative diffusion model in the context of breast cancer segmentation. Extensive experiments have demonstrated the superiority of our model over the current state-of-the-art approaches, confirming its effectiveness as a flexible diffusion denoising method suitable for medical image research. Our code will be publicly available later.
Abstract:The convergence of digital twin technology and the emerging 6G network presents both challenges and numerous research opportunities. This article explores the potential synergies between digital twin and 6G, highlighting the key challenges and proposing fundamental principles for their integration. We discuss the unique requirements and capabilities of digital twin in the context of 6G networks, such as sustainable deployment, real-time synchronization, seamless migration, predictive analytic, and closed-loop control. Furthermore, we identify research opportunities for leveraging digital twin and artificial intelligence to enhance various aspects of 6G, including network optimization, resource allocation, security, and intelligent service provisioning. This article aims to stimulate further research and innovation at the intersection of digital twin and 6G, paving the way for transformative applications and services in the future.
Abstract:Semantic communications have been envisioned as a potential technique that goes beyond Shannon paradigm. Unlike modern communications that provide bit-level security, the eaves-dropping of semantic communications poses a significant risk of potentially exposing intention of legitimate user. To address this challenge, a novel deep neural network (DNN) enabled secure semantic communication (DeepSSC) system is developed by capitalizing on physical layer security. To balance the tradeoff between security and reliability, a two-phase training method for DNNs is devised. Particularly, Phase I aims at semantic recovery of legitimate user, while Phase II attempts to minimize the leakage of semantic information to eavesdroppers. The loss functions of DeepSSC in Phases I and II are respectively designed according to Shannon capacity and secure channel capacity, which are approximated with variational inference. Moreover, we define the metric of secure bilingual evaluation understudy (S-BLEU) to assess the security of semantic communications. Finally, simulation results demonstrate that DeepSSC achieves a significant boost to semantic security particularly in high signal-to-noise ratio regime, despite a minor degradation of reliability.
Abstract:Feature upsampling is a fundamental and indispensable ingredient of almost all current network structures for image segmentation tasks. Recently, a popular similarity-based feature upsampling pipeline has been proposed, which utilizes a high-resolution feature as guidance to help upsample the low-resolution deep feature based on their local similarity. Albeit achieving promising performance, this pipeline has specific limitations: 1) HR query and LR key features are not well aligned; 2) the similarity between query-key features is computed based on the fixed inner product form; 3) neighbor selection is coarsely operated on LR features, resulting in mosaic artifacts. These shortcomings make the existing methods along this pipeline primarily applicable to hierarchical network architectures with iterative features as guidance and they are not readily extended to a broader range of structures, especially for a direct high-ratio upsampling. Against the issues, we meticulously optimize every methodological design. Specifically, we firstly propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives, and then construct a parameterized paired central difference convolution block for flexibly calculating the similarity between the well-aligned query-key features. Besides, we develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts. Based on these careful designs, we systematically construct a refreshed similarity-based feature upsampling framework named ReSFU. Extensive experiments substantiate that our proposed ReSFU is finely applicable to various types of architectures in a direct high-ratio upsampling manner, and consistently achieves satisfactory performance on different segmentation applications, showing superior generality and ease of deployment.
Abstract:Deep Reinforcement Learning (DRL) agents have demonstrated impressive success in a wide range of game genres. However, existing research primarily focuses on optimizing DRL competence rather than addressing the challenge of prolonged player interaction. In this paper, we propose a practical DRL agent system for fighting games named Sh\=ukai, which has been successfully deployed to Naruto Mobile, a popular fighting game with over 100 million registered users. Sh\=ukai quantifies the state to enhance generalizability, introducing Heterogeneous League Training (HELT) to achieve balanced competence, generalizability, and training efficiency. Furthermore, Sh\=ukai implements specific rewards to align the agent's behavior with human expectations. Sh\=ukai's ability to generalize is demonstrated by its consistent competence across all characters, even though it was trained on only 13% of them. Additionally, HELT exhibits a remarkable 22% improvement in sample efficiency. Sh\=ukai serves as a valuable training partner for players in Naruto Mobile, enabling them to enhance their abilities and skills.
Abstract:Model editing is an emerging field that focuses on updating the knowledge embedded within large language models (LLMs) without extensive retraining. However, current model editing methods significantly compromise the general abilities of LLMs as the number of edits increases, and this trade-off poses a substantial challenge to the continual learning of LLMs. In this paper, we first theoretically analyze that the factor affecting the general abilities in sequential model editing lies in the condition number of the edited matrix. The condition number of a matrix represents its numerical sensitivity, and therefore can be used to indicate the extent to which the original knowledge associations stored in LLMs are perturbed after editing. Subsequently, statistical findings demonstrate that the value of this factor becomes larger as the number of edits increases, thereby exacerbating the deterioration of general abilities. To this end, a framework termed Perturbation Restraint on Upper bouNd for Editing (PRUNE) is proposed, which applies the condition number restraints in sequential editing. These restraints can lower the upper bound on perturbation to edited models, thus preserving the general abilities. Systematically, we conduct experiments employing three popular editing methods on three LLMs across four representative downstream tasks. Evaluation results show that PRUNE can preserve considerable general abilities while maintaining the editing performance effectively in sequential model editing. The code and data are available at https://github.com/mjy1111/PRUNE.
Abstract:Background and Objective: In neurosurgery, fusing clinical images and depth images that can improve the information and details is beneficial to surgery. We found that the registration of face depth images was invalid frequently using existing methods. To abundant traditional image methods with depth information, a method in registering with depth images and traditional clinical images was investigated. Methods: We used the dlib library, a C++ library that could be used in face recognition, and recognized the key points on faces from the structure light camera and CT image. The two key point clouds were registered for coarse registration by the ICP method. Fine registration was finished after coarse registration by the ICP method. Results: RMSE after coarse and fine registration is as low as 0.995913 mm. Compared with traditional methods, it also takes less time. Conclusions: The new method successfully registered the facial depth image from structure light images and CT with a low error, and that would be promising and efficient in clinical application of neurosurgery.
Abstract:Exploring and modeling rain generation mechanism is critical for augmenting paired data to ease training of rainy image processing models. Against this task, this study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration and well encodes the learning of the fundamental rain factors (i.e., shape, orientation, length, width and sparsity) explicitly into the deep network. Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, like conventional artificial strategies, but also finely adapt to complicated and diverse practical rainy images, like deep learning methods. By rationally adopting filter parameterization technique, we first time achieve a deep network that is finely controllable with respect to rain factors and able to learn the distribution of these factors purely from data. Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks compared to current state-of-the-art rain generation methods. Besides, the paired data augmentation experiments, including both in-distribution and out-of-distribution (OOD), further validate the diversity of samples generated by our model for in-distribution deraining and OOD generalization tasks.
Abstract:Autonomous driving systems face the formidable challenge of navigating intricate and dynamic environments with uncertainty. This study presents a unified prediction and planning framework that concurrently models short-term aleatoric uncertainty (SAU), long-term aleatoric uncertainty (LAU), and epistemic uncertainty (EU) to predict and establish a robust foundation for planning in dynamic contexts. The framework uses Gaussian mixture models and deep ensemble methods, to concurrently capture and assess SAU, LAU, and EU, where traditional methods do not integrate these uncertainties simultaneously. Additionally, uncertainty-aware planning is introduced, considering various uncertainties. The study's contributions include comparisons of uncertainty estimations, risk modeling, and planning methods in comparison to existing approaches. The proposed methods were rigorously evaluated using the CommonRoad benchmark and settings with limited perception. These experiments illuminated the advantages and roles of different uncertainty factors in autonomous driving processes. In addition, comparative assessments of various uncertainty modeling strategies underscore the benefits of modeling multiple types of uncertainties, thus enhancing planning accuracy and reliability. The proposed framework facilitates the development of methods for UAP and surpasses existing uncertainty-aware risk models, particularly when considering diverse traffic scenarios. Project page: https://swb19.github.io/UAP/.
Abstract:In the rapidly evolving field of autonomous driving, accurate trajectory prediction is pivotal for vehicular safety. However, trajectory predictions often deviate from actual paths, particularly in complex and challenging environments, leading to significant errors. To address this issue, our study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, enhancing trajectory prediction capabilities. This method effectively combines advanced trajectory prediction networks with a DOS prediction module, overcoming the shortcomings of existing models. It provides a comprehensive and adaptable framework for predicting the potential occupancy sets of traffic participants. The main contributions of this research include: 1) A novel DOS prediction model tailored for complex scenarios, augmenting traditional trajectory prediction; 2) The development of unique DOS representations and evaluation metrics; 3) Extensive validation through experiments, demonstrating enhanced performance and adaptability. This research contributes to the advancement of safer and more efficient intelligent vehicle and transportation systems.