Abstract:This paper presents a novel real-time, delay-aware cooperative perception system designed for intelligent mobility platforms operating in dynamic indoor environments. The system contains a network of multi-modal sensor nodes and a central node that collectively provide perception services to mobility platforms. The proposed Hierarchical Clustering Considering the Scanning Pattern and Ground Contacting Feature based Lidar Camera Fusion improve intra-node perception for crowded environment. The system also features delay-aware global perception to synchronize and aggregate data across nodes. To validate our approach, we introduced the Indoor Pedestrian Tracking dataset, compiled from data captured by two indoor sensor nodes. Our experiments, compared to baselines, demonstrate significant improvements in detection accuracy and robustness against delays. The dataset is available in the repository: https://github.com/NingMingHao/MVSLab-IndoorCooperativePerception
Abstract:This paper introduces a framework for an indoor autonomous mobility system that can perform patient transfers and materials handling. Unlike traditional systems that rely on onboard perception sensors, the proposed approach leverages a global perception and localization (PL) through Infrastructure Sensor Nodes (ISNs) and cloud computing technology. Using the global PL, an integrated Model Predictive Control (MPC)-based local planning and tracking controller augmented with Artificial Potential Field (APF) is developed, enabling reliable and efficient motion planning and obstacle avoidance ability while tracking predefined reference motions. Simulation results demonstrate the effectiveness of the proposed MPC controller in smoothly navigating around both static and dynamic obstacles. The proposed system has the potential to extend to intelligent connected autonomous vehicles, such as electric or cargo transport vehicles with four-wheel independent drive/steering (4WID-4WIS) configurations.
Abstract:Grounding temporal video segments described in natural language queries effectively and efficiently is a crucial capability needed in vision-and-language fields. In this paper, we deal with the fast video temporal grounding (FVTG) task, aiming at localizing the target segment with high speed and favorable accuracy. Most existing approaches adopt elaborately designed cross-modal interaction modules to improve the grounding performance, which suffer from the test-time bottleneck. Although several common space-based methods enjoy the high-speed merit during inference, they can hardly capture the comprehensive and explicit relations between visual and textual modalities. In this paper, to tackle the dilemma of speed-accuracy tradeoff, we propose a commonsense-aware cross-modal alignment (CCA) framework, which incorporates commonsense-guided visual and text representations into a complementary common space for fast video temporal grounding. Specifically, the commonsense concepts are explored and exploited by extracting the structural semantic information from a language corpus. Then, a commonsense-aware interaction module is designed to obtain bridged visual and text features by utilizing the learned commonsense concepts. Finally, to maintain the original semantic information of textual queries, a cross-modal complementary common space is optimized to obtain matching scores for performing FVTG. Extensive results on two challenging benchmarks show that our CCA method performs favorably against state-of-the-arts while running at high speed. Our code is available at https://github.com/ZiyueWu59/CCA.