Abstract:The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.
Abstract:Aligning large vision-language models (LVLMs) with human preferences is challenging due to the scarcity of fine-grained, high-quality, and multimodal preference data without human annotations. Existing methods relying on direct distillation often struggle with low-confidence data, leading to suboptimal performance. To address this, we propose CAREVL, a novel method for preference reward modeling by reliably using both high- and low-confidence data. First, a cluster of auxiliary expert models (textual reward models) innovatively leverages image captions as weak supervision signals to filter high-confidence data. The high-confidence data are then used to fine-tune the LVLM. Second, low-confidence data are used to generate diverse preference samples using the fine-tuned LVLM. These samples are then scored and selected to construct reliable chosen-rejected pairs for further training. CAREVL achieves performance improvements over traditional distillation-based methods on VL-RewardBench and MLLM-as-a-Judge benchmark, demonstrating its effectiveness. The code will be released soon.
Abstract:Remote Sensing Image Captioning (RSIC) is a cross-modal field bridging vision and language, aimed at automatically generating natural language descriptions of features and scenes in remote sensing imagery. Despite significant advances in developing sophisticated methods and large-scale datasets for training vision-language models (VLMs), two critical challenges persist: the scarcity of non-English descriptive datasets and the lack of multilingual capability evaluation for models. These limitations fundamentally impede the progress and practical deployment of RSIC, particularly in the era of large VLMs. To address these challenges, this paper presents several significant contributions to the field. First, we introduce and analyze BRSIC (Bilingual Remote Sensing Image Captioning), a comprehensive bilingual dataset that enriches three established English RSIC datasets with Chinese descriptions, encompassing 13,634 images paired with 68,170 bilingual captions. Building upon this foundation, we develop a systematic evaluation framework that addresses the prevalent inconsistency in evaluation protocols, enabling rigorous assessment of model performance through standardized retraining procedures on BRSIC. Furthermore, we present an extensive empirical study of eight state-of-the-art large vision-language models (LVLMs), examining their capabilities across multiple paradigms including zero-shot inference, supervised fine-tuning, and multi-lingual training. This comprehensive evaluation provides crucial insights into the strengths and limitations of current LVLMs in handling multilingual remote sensing tasks. Additionally, our cross-dataset transfer experiments reveal interesting findings. The code and data will be available at https://github.com/mrazhou/BRSIC.
Abstract:Open-vocabulary segmentation aims to identify and segment specific regions and objects based on text-based descriptions. A common solution is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between vision and text information. However, VLMs are typically pretrained for image-level vision-text alignment, focusing on global semantic features. In contrast, segmentation tasks require fine-grained pixel-level alignment and detailed category boundary information, which VLMs alone cannot provide. As a result, information extracted directly from VLMs can't meet the requirements of segmentation tasks. To address this limitation, we propose FGAseg, a model designed for fine-grained pixel-text alignment and category boundary supplementation. The core of FGAseg is a Pixel-Level Alignment module that employs a cross-modal attention mechanism and a text-pixel alignment loss to refine the coarse-grained alignment from CLIP, achieving finer-grained pixel-text semantic alignment. Additionally, to enrich category boundary information, we introduce the alignment matrices as optimizable pseudo-masks during forward propagation and propose Category Information Supplementation module. These pseudo-masks, derived from cosine and convolutional similarity, provide essential global and local boundary information between different categories. By combining these two strategies, FGAseg effectively enhances pixel-level alignment and category boundary information, addressing key challenges in open-vocabulary segmentation. Extensive experiments demonstrate that FGAseg outperforms existing methods on open-vocabulary semantic segmentation benchmarks.
Abstract:Traffic signs play a key role in assisting autonomous driving systems (ADS) by enabling the assessment of vehicle behavior in compliance with traffic regulations and providing navigation instructions. However, current works are limited to basic sign understanding without considering the egocentric vehicle's spatial position, which fails to support further regulation assessment and direction navigation. Following the above issues, we introduce a new task: traffic sign interpretation from the vehicle's first-person view, referred to as TSI-FPV. Meanwhile, we develop a traffic guidance assistant (TGA) scenario application to re-explore the role of traffic signs in ADS as a complement to popular autonomous technologies (such as obstacle perception). Notably, TGA is not a replacement for electronic map navigation; rather, TGA can be an automatic tool for updating it and complementing it in situations such as offline conditions or temporary sign adjustments. Lastly, a spatial and semantic logic-aware stepwise reasoning pipeline (SignEye) is constructed to achieve the TSI-FPV and TGA, and an application-specific dataset (Traffic-CN) is built. Experiments show that TSI-FPV and TGA are achievable via our SignEye trained on Traffic-CN. The results also demonstrate that the TGA can provide complementary information to ADS beyond existing popular autonomous technologies.
Abstract:Texts on the intelligent transportation scene include mass information. Fully harnessing this information is one of the critical drivers for advancing intelligent transportation. Unlike the general scene, detecting text in transportation has extra demand, such as a fast inference speed, except for high accuracy. Most existing real-time text detection methods are based on the shrink mask, which loses some geometry semantic information and needs complex post-processing. In addition, the previous method usually focuses on correct output, which ignores feature correction and lacks guidance during the intermediate process. To this end, we propose an efficient multi-scene text detector that contains an effective text representation similar mask (SM) and a feature correction module (FCM). Unlike previous methods, the former aims to preserve the geometric information of the instances as much as possible. Its post-progressing saves 50$\%$ of the time, accurately and efficiently reconstructing text contours. The latter encourages false positive features to move away from the positive feature center, optimizing the predictions from the feature level. Some ablation studies demonstrate the efficiency of the SM and the effectiveness of the FCM. Moreover, the deficiency of existing traffic datasets (such as the low-quality annotation or closed source data unavailability) motivated us to collect and annotate a traffic text dataset, which introduces motion blur. In addition, to validate the scene robustness of the SM-Net, we conduct experiments on traffic, industrial, and natural scene datasets. Extensive experiments verify it achieves (SOTA) performance on several benchmarks. The code and dataset are available at: \url{https://github.com/fengmulin/SMNet}.
Abstract:A straightforward pipeline for zero-shot out-of-distribution (OOD) detection involves selecting potential OOD labels from an extensive semantic pool and then leveraging a pre-trained vision-language model to perform classification on both in-distribution (ID) and OOD labels. In this paper, we theorize that enhancing performance requires expanding the semantic pool, while increasing the expected probability of selected OOD labels being activated by OOD samples, and ensuring low mutual dependence among the activations of these OOD labels. A natural expansion manner is to adopt a larger lexicon; however, the inevitable introduction of numerous synonyms and uncommon words fails to meet the above requirements, indicating that viable expansion manners move beyond merely selecting words from a lexicon. Since OOD detection aims to correctly classify input images into ID/OOD class groups, we can "make up" OOD label candidates which are not standard class names but beneficial for the process. Observing that the original semantic pool is comprised of unmodified specific class names, we correspondingly construct a conjugated semantic pool (CSP) consisting of modified superclass names, each serving as a cluster center for samples sharing similar properties across different categories. Consistent with our established theory, expanding OOD label candidates with the CSP satisfies the requirements and outperforms existing works by 7.89% in FPR95. Codes are available in https://github.com/MengyuanChen21/NeurIPS2024-CSP.
Abstract:Evidential Deep Learning (EDL) is an emerging method for uncertainty estimation that provides reliable predictive uncertainty in a single forward pass, attracting significant attention. Grounded in subjective logic, EDL derives Dirichlet concentration parameters from neural networks to construct a Dirichlet probability density function (PDF), modeling the distribution of class probabilities. Despite its success, EDL incorporates several nonessential settings: In model construction, (1) a commonly ignored prior weight parameter is fixed to the number of classes, while its value actually impacts the balance between the proportion of evidence and its magnitude in deriving predictive scores. In model optimization, (2) the empirical risk features a variance-minimizing optimization term that biases the PDF towards a Dirac delta function, potentially exacerbating overconfidence. (3) Additionally, the structural risk typically includes a KL-divergence-minimizing regularization, whose optimization direction extends beyond the intended purpose and contradicts common sense, diminishing the information carried by the evidence magnitude. Therefore, we propose Re-EDL, a simplified yet more effective variant of EDL, by relaxing the nonessential settings and retaining the essential one, namely, the adoption of projected probability from subjective logic. Specifically, Re-EDL treats the prior weight as an adjustable hyperparameter rather than a fixed scalar, and directly optimizes the expectation of the Dirichlet PDF provided by deprecating both the variance-minimizing optimization term and the divergence regularization term. Extensive experiments and state-of-the-art performance validate the effectiveness of our method. The source code is available at https://github.com/MengyuanChen21/Re-EDL.
Abstract:Due to the diversity of scene text in aspects such as font, color, shape, and size, accurately and efficiently detecting text is still a formidable challenge. Among the various detection approaches, segmentation-based approaches have emerged as prominent contenders owing to their flexible pixel-level predictions. However, these methods typically model text instances in a bottom-up manner, which is highly susceptible to noise. In addition, the prediction of pixels is isolated without introducing pixel-feature interaction, which also influences the detection performance. To alleviate these problems, we propose a multi-information level arbitrary-shaped text detector consisting of a focus entirety module (FEM) and a perceive environment module (PEM). The former extracts instance-level features and adopts a top-down scheme to model texts to reduce the influence of noises. Specifically, it assigns consistent entirety information to pixels within the same instance to improve their cohesion. In addition, it emphasizes the scale information, enabling the model to distinguish varying scale texts effectively. The latter extracts region-level information and encourages the model to focus on the distribution of positive samples in the vicinity of a pixel, which perceives environment information. It treats the kernel pixels as positive samples and helps the model differentiate text and kernel features. Extensive experiments demonstrate the FEM's ability to efficiently support the model in handling different scale texts and confirm the PEM can assist in perceiving pixels more accurately by focusing on pixel vicinities. Comparisons show the proposed model outperforms existing state-of-the-art approaches on four public datasets.
Abstract:The irregular contour representation is one of the tough challenges in scene text detection. Although segmentation-based methods have achieved significant progress with the help of flexible pixel prediction, the overlap of geographically close texts hinders detecting them separately. To alleviate this problem, some shrink-based methods predict text kernels and expand them to restructure texts. However, the text kernel is an artificial object with incomplete semantic features that are prone to incorrect or missing detection. In addition, different from the general objects, the geometry features (aspect ratio, scale, and shape) of scene texts vary significantly, which makes it difficult to detect them accurately. To consider the above problems, we propose an effective spotlight text detector (STD), which consists of a spotlight calibration module (SCM) and a multivariate information extraction module (MIEM). The former concentrates efforts on the candidate kernel, like a camera focus on the target. It obtains candidate features through a mapping filter and calibrates them precisely to eliminate some false positive samples. The latter designs different shape schemes to explore multiple geometric features for scene texts. It helps extract various spatial relationships to improve the model's ability to recognize kernel regions. Ablation studies prove the effectiveness of the designed SCM and MIEM. Extensive experiments verify that our STD is superior to existing state-of-the-art methods on various datasets, including ICDAR2015, CTW1500, MSRA-TD500, and Total-Text.