Abstract:Pre-trained vision-language models (VLMs), such as CLIP, have exhibited remarkable performance across various downstream tasks by aligning text and images in a unified embedding space. However, due to the imbalanced distribution of pre-trained datasets, CLIP suffers from the bias problem in real-world applications. Existing debiasing methods struggle to obtain sufficient image samples for minority groups and incur high costs for group labeling. To address the limitations, we propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases. Specifically, this approach repurposes the text encoder to function as an image encoder, thereby eliminating the need for image data. Simultaneously, it utilizes a large language model (LLM) to generate a balanced text dataset, which is then used for prompt tuning. However, we observed that the model overfits to the text modality because label names, serving as supervision signals, appear explicitly in the texts. To address this issue, we further introduce a Multi-Target Prediction (MTP) task that motivates the model to focus on complex contexts and distinguish between target and biased information. Extensive experiments on the Waterbirds and CelebA datasets show that our method significantly improves group robustness, achieving state-of-the-art results among image-free methods and even competitive performance compared to image-supervised methods. Furthermore, the proposed method can be adapted to challenging scenarios with multiple or unknown bias attributes, demonstrating its strong generalization and robustness.
Abstract:Unlike reinforcement learning (RL) agents, humans remain capable multitaskers in changing environments. In spite of only experiencing the world through their own observations and interactions, people know how to balance focusing on tasks with learning about how changes may affect their understanding of the world. This is possible by choosing to solve tasks in ways that are interesting and generally informative beyond just the current task. Motivated by this, we propose an agent influence framework for RL agents to improve the adaptation efficiency of external models in changing environments without any changes to the agent's rewards. Our formulation is composed of two self-contained modules: interest fields and behavior shaping via interest fields. We implement an uncertainty-based interest field algorithm as well as a skill-sampling-based behavior-shaping algorithm to use in testing this framework. Our results show that our method outperforms the baselines in terms of external model adaptation on metrics that measure both efficiency and performance.
Abstract:The evolution of Artificial Intelligence Generated Contents (AIGCs) is advancing towards higher quality. The growing interactions with AIGCs present a new challenge to the data-driven AI community: While AI-generated contents have played a crucial role in a wide range of AI models, the potential hidden risks they introduce have not been thoroughly examined. Beyond human-oriented forgery detection, AI-generated content poses potential issues for AI models originally designed to process natural data. In this study, we underscore the exacerbated hallucination phenomena in Large Vision-Language Models (LVLMs) caused by AI-synthetic images. Remarkably, our findings shed light on a consistent AIGC \textbf{hallucination bias}: the object hallucinations induced by synthetic images are characterized by a greater quantity and a more uniform position distribution, even these synthetic images do not manifest unrealistic or additional relevant visual features compared to natural images. Moreover, our investigations on Q-former and Linear projector reveal that synthetic images may present token deviations after visual projection, thereby amplifying the hallucination bias.
Abstract:The term co-creativity has been used to describe a wide variety of human-AI assemblages in which human and AI are both involved in a creative endeavor. In order to assist with disambiguating research efforts, we present an ontology of co-creative systems, focusing on how responsibilities are divided between human and AI system and the information exchanged between them. We extend Lubart's original ontology of creativity support tools with three new categories emphasizing artificial intelligence: computer-as-subcontractor, computer-as-critic, and computer-as-teammate, some of which have sub-categorizations.
Abstract:Many advancements have been made in procedural content generation for games, and with mixed-initiative co-creativity, have the potential for great benefits to human designers. However, co-creative systems for game generation are typically limited to specific genres, rules, or games, limiting the creativity of the designer. We seek to model games abstractly enough to apply to any genre, focusing on designing game systems and mechanics, and create a controllable, co-creative agent that can collaborate on these designs. We present a model of games using state-machine-like components and resource flows, a set of controllable metrics, a design evaluator simulating playthroughs with these metrics, and an evolutionary design balancer and generator. We find this system to be both able to express a wide range of games and able to be human-controllable for future co-creative applications.
Abstract:Adversarial example detection is known to be an effective adversarial defense method. Black-box attack, which is a more realistic threat and has led to various black-box adversarial training-based defense methods, however, does not attract considerable attention in adversarial example detection. In this paper, we fill this gap by positioning the problem of black-box adversarial example detection (BAD). Data analysis under the introduced BAD settings demonstrates (1) the incapability of existing detectors in addressing the black-box scenario and (2) the potential of exploring BAD solutions from a data perspective. To tackle the BAD problem, we propose a data reconstruction-based adversarial example detection method. Specifically, we use variational auto-encoder (VAE) to capture both pixel and frequency representations of normal examples. Then we use reconstruction error to detect adversarial examples. Compared with existing detection methods, the proposed method achieves substantially better detection performance in BAD, which helps promote the deployment of adversarial example detection-based defense solutions in real-world models.
Abstract:Generative Artificial Intelligence systems have been developed for image, code, story, and game generation with the goal of facilitating human creativity. Recent work on neural generative systems has emphasized one particular means of interacting with AI systems: the user provides a specification, usually in the form of prompts, and the AI system generates the content. However, there are other configurations of human and AI coordination, such as co-creativity (CC) in which both human and AI systems can contribute to content creation, and mixed-initiative (MI) in which both human and AI systems can initiate content changes. In this paper, we define a hypothetical human-AI configuration design space consisting of different means for humans and AI systems to communicate creative intent to each other. We conduct a human participant study with 185 participants to understand how users want to interact with differently configured MI-CC systems. We find out that MI-CC systems with more extensive coverage of the design space are rated higher or on par on a variety of creative and goal-completion metrics, demonstrating that wider coverage of the design space can improve user experience and achievement when using the system; Preference varies greatly between expertise groups, suggesting the development of adaptive, personalized MI-CC systems; Participants identified new design space dimensions including scrutability -- the ability to poke and prod at models -- and explainability.
Abstract:Open-world novelty--a sudden change in the mechanics or properties of an environment--is a common occurrence in the real world. Novelty adaptation is an agent's ability to improve its policy performance post-novelty. Most reinforcement learning (RL) methods assume that the world is a closed, fixed process. Consequentially, RL policies adapt inefficiently to novelties. To address this, we introduce WorldCloner, an end-to-end trainable neuro-symbolic world model for rapid novelty adaptation. WorldCloner learns an efficient symbolic representation of the pre-novelty environment transitions, and uses this transition model to detect novelty and efficiently adapt to novelty in a single-shot fashion. Additionally, WorldCloner augments the policy learning process using imagination-based adaptation, where the world model simulates transitions of the post-novelty environment to help the policy adapt. By blending ''imagined'' transitions with interactions in the post-novelty environment, performance can be recovered with fewer total environment interactions. Using environments designed for studying novelty in sequential decision-making problems, we show that the symbolic world model helps its neural policy adapt more efficiently than model-based and model-based neural-only reinforcement learning methods.
Abstract:The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
Abstract:Recent neural generation systems have demonstrated the potential for procedurally generating game content, images, stories, and more. However, most neural generation algorithms are "uncontrolled" in the sense that the user has little say in creative decisions beyond the initial prompt specification. Co-creative, mixed-initiative systems require user-centric means of influencing the algorithm, especially when users are unlikely to have machine learning expertise. The key to co-creative systems is the ability to communicate ideas and intent from the user to the agent, as well as from the agent to the user. Key questions in co-creative AI include: How can users express their creative intentions? How can creative AI systems communicate their beliefs, explain their moves, or instruct users to act on their behalf? When should creative AI systems take initiative? The answer to such questions and more will enable us to develop better co-creative systems that make humans more capable of expressing their creative intents. We introduce CREATIVE-WAND, a customizable framework for investigating co-creative mixed-initiative generation. CREATIVE-WAND enables plug-and-play injection of generative models and human-agent communication channels into a chat-based interface. It provides a number of dimensions along which an AI generator and humans can communicate during the co-creative process. We illustrate the CREATIVE-WAND framework by using it to study one dimension of co-creative communication-global versus local creative intent specification by the user-in the context of storytelling.