Abstract:This paper addresses the critical need for democratizing large language models (LLM) in the Arab world, a region that has seen slower progress in developing models comparable to state-of-the-art offerings like GPT-4 or ChatGPT 3.5, due to a predominant focus on mainstream languages (e.g., English and Chinese). One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding. However, using a different vocabulary often leads to a degradation of learned knowledge since many words are initially out-of-vocabulary (OOV) when training starts. Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion, which is implemented by a modified BPE algorithm that progressively extends the Arabic subwords in its dynamic vocabulary during training, thereby balancing the OOV ratio at every stage. The ablation study demonstrated the effectiveness of Progressive Vocabulary Expansion. Moreover, AraLLaMA achieves decent performance comparable to the best Arabic LLMs across a variety of Arabic benchmarks. Models, training data, benchmarks, and codes will be all open-sourced.
Abstract:The application of Large Language Models (LLMs) in Computer-Aided Design (CAD) remains an underexplored area, despite their remarkable advancements in other domains. In this paper, we present BlenderLLM, a novel framework for training LLMs specifically for CAD tasks leveraging a self-improvement methodology. To support this, we developed a bespoke training dataset, BlendNet, and introduced a comprehensive evaluation suite, CADBench. Our results reveal that existing models demonstrate significant limitations in generating accurate CAD scripts. However, through minimal instruction-based fine-tuning and iterative self-improvement, BlenderLLM significantly surpasses these models in both functionality and accuracy of CAD script generation. This research establishes a strong foundation for the application of LLMs in CAD while demonstrating the transformative potential of self-improving models in advancing CAD automation. We encourage further exploration and adoption of these methodologies to drive innovation in the field. The dataset, model, benchmark, and source code are publicly available at https://github.com/FreedomIntelligence/BlenderLLM
Abstract:Large language models (LLMs) have shown success in generating high-quality responses. In order to achieve better alignment with LLMs with human preference, various works are proposed based on specific optimization process, which, however, is not suitable to Black-Box LLMs like GPT-4, due to inaccessible parameters. In Black-Box LLMs case, their performance is highly dependent on the quality of the provided prompts. Existing methods to enhance response quality often involve a prompt refinement model, yet these approaches potentially suffer from semantic inconsistencies between the refined and original prompts, and typically overlook the relationship between them. To address these challenges, we introduce a self-instructed in-context learning framework that empowers LLMs to deliver more effective responses by generating reliable derived prompts to construct informative contextual environments. Our approach incorporates a self-instructed reinforcement learning mechanism, enabling direct interaction with the response model during derived prompt generation for better alignment. We then formulate querying as an in-context learning task, using responses from LLMs combined with the derived prompts to establish a contextual demonstration for the original prompt. This strategy ensures alignment with the original query, reduces discrepancies from refined prompts, and maximizes the LLMs' in-context learning capability. Extensive experiments demonstrate that the proposed method not only generates more reliable derived prompts but also significantly enhances LLMs' ability to deliver more effective responses, including Black-Box models such as GPT-4.
Abstract:Large Language Models (LLMs) have become a focal point in the rapidly evolving field of artificial intelligence. However, a critical concern is the presence of toxic content within the pre-training corpus of these models, which can lead to the generation of inappropriate outputs. Investigating methods for detecting internal faults in LLMs can help us understand their limitations and improve their security. Existing methods primarily focus on jailbreaking attacks, which involve manually or automatically constructing adversarial content to prompt the target LLM to generate unexpected responses. These methods rely heavily on prompt engineering, which is time-consuming and usually requires specially designed questions. To address these challenges, this paper proposes a target-driven attack paradigm that focuses on directly eliciting the target response instead of optimizing the prompts. We introduce the use of another LLM as the detector for toxic content, referred to as ToxDet. Given a target toxic response, ToxDet can generate a possible question and a preliminary answer to provoke the target model into producing desired toxic responses with meanings equivalent to the provided one. ToxDet is trained by interacting with the target LLM and receiving reward signals from it, utilizing reinforcement learning for the optimization process. While the primary focus of the target models is on open-source LLMs, the fine-tuned ToxDet can also be transferred to attack black-box models such as GPT-4o, achieving notable results. Experimental results on AdvBench and HH-Harmless datasets demonstrate the effectiveness of our methods in detecting the tendencies of target LLMs to generate harmful responses. This algorithm not only exposes vulnerabilities but also provides a valuable resource for researchers to strengthen their models against such attacks.
Abstract:Colonoscopy analysis, particularly automatic polyp segmentation and detection, is essential for assisting clinical diagnosis and treatment. However, as medical image annotation is labour- and resource-intensive, the scarcity of annotated data limits the effectiveness and generalization of existing methods. Although recent research has focused on data generation and augmentation to address this issue, the quality of the generated data remains a challenge, which limits the contribution to the performance of subsequent tasks. Inspired by the superiority of diffusion models in fitting data distributions and generating high-quality data, in this paper, we propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks. Specifically, ArSDM utilizes the ground-truth segmentation mask as a prior condition during training and adjusts the diffusion loss for each input according to the polyp/background size ratio. Furthermore, ArSDM incorporates a pre-trained segmentation model to refine the training process by reducing the difference between the ground-truth mask and the prediction mask. Extensive experiments on segmentation and detection tasks demonstrate the generated data by ArSDM could significantly boost the performance of baseline methods.
Abstract:Traffic simulation provides interactive data for the optimization of traffic policies. However, existing traffic simulators are limited by their lack of scalability and shortage in input data, which prevents them from generating interactive data from traffic simulation in the scenarios of real large-scale city road networks. In this paper, we present City Brain Lab, a toolkit for scalable traffic simulation. CBLab is consist of three components: CBEngine, CBData, and CBScenario. CBEngine is a highly efficient simulators supporting large scale traffic simulation. CBData includes a traffic dataset with road network data of 100 cities all around the world. We also develop a pipeline to conduct one-click transformation from raw road networks to input data of our traffic simulation. Combining CBEngine and CBData allows researchers to run scalable traffic simulation in the road network of real large-scale cities. Based on that, CBScenario implements an interactive environment and several baseline methods for two scenarios of traffic policies respectively, with which traffic policies adaptable for large-scale urban traffic can be trained and tuned. To the best of our knowledge, CBLab is the first infrastructure supporting traffic policy optimization on large-scale urban scenarios. The code is available on Github: https://github.com/CityBrainLab/CityBrainLab.git.
Abstract:Medical vision-and-language pre-training provides a feasible solution to extract effective vision-and-language representations from medical images and texts. However, few studies have been dedicated to this field to facilitate medical vision-and-language understanding. In this paper, we propose a self-supervised learning paradigm with multi-modal masked autoencoders (M$^3$AE), which learn cross-modal domain knowledge by reconstructing missing pixels and tokens from randomly masked images and texts. There are three key designs to make this simple approach work. First, considering the different information densities of vision and language, we adopt different masking ratios for the input image and text, where a considerably larger masking ratio is used for images. Second, we use visual and textual features from different layers to perform the reconstruction to deal with different levels of abstraction in visual and language. Third, we develop different designs for vision and language decoders (i.e., a Transformer for vision and a multi-layer perceptron for language). To perform a comprehensive evaluation and facilitate further research, we construct a medical vision-and-language benchmark including three tasks. Experimental results demonstrate the effectiveness of our approach, where state-of-the-art results are achieved on all downstream tasks. Besides, we conduct further analysis to better verify the effectiveness of different components of our approach and various settings of pre-training. The source code is available at~\url{https://github.com/zhjohnchan/M3AE}.
Abstract:3D scene understanding is a relatively emerging research field. In this paper, we introduce the Visual Question Answering task in 3D real-world scenes (VQA-3D), which aims to answer all possible questions given a 3D scene. To tackle this problem, the first VQA-3D dataset, namely CLEVR3D, is proposed, which contains 60K questions in 1,129 real-world scenes. Specifically, we develop a question engine leveraging 3D scene graph structures to generate diverse reasoning questions, covering the questions of objects' attributes (i.e., size, color, and material) and their spatial relationships. Built upon this dataset, we further design the first VQA-3D baseline model, TransVQA3D. The TransVQA3D model adopts well-designed Transformer architectures to achieve superior VQA-3D performance, compared with the pure language baseline and previous 3D reasoning methods directly applied to 3D scenarios. Experimental results verify that taking VQA-3D as an auxiliary task can boost the performance of 3D scene understanding, including scene graph analysis for the node-wise classification and whole-graph recognition.
Abstract:Two-sided matching markets have long existed to pair agents in the absence of regulated exchanges. A common example is school choice, where a matching mechanism uses student and school preferences to assign students to schools. In such settings, forming preferences is both difficult and critical. Prior work has suggested various prediction mechanisms that help agents make decisions about their preferences. Although often deployed together, these matching and prediction mechanisms are almost always analyzed separately. The present work shows that at the intersection of the two lies a previously unexplored type of strategic behavior: agents returning to the market (e.g., schools) can attack future predictions by interacting short-term non-optimally with their matches. Here, we first introduce this type of strategic behavior, which we call an `adversarial interaction attack'. Next, we construct a formal economic model that captures the feedback loop between prediction mechanisms designed to assist agents and the matching mechanism used to pair them. This economic model allows us to analyze adversarial interaction attacks. Finally, using school choice as an example, we build a simulation to show that, as the trust in and accuracy of predictions increases, schools gain progressively more by initiating an adversarial interaction attack. We also show that this attack increases inequality in the student population.
Abstract:Existing methods for debiasing word embeddings often do so only superficially, in that words that are stereotypically associated with, e.g., a particular gender in the original embedding space can still be clustered together in the debiased space. However, there has yet to be a study that explores why this residual clustering exists, and how it might be addressed. The present work fills this gap. We identify two potential reasons for which residual bias exists and develop a new pipeline, MDR Cluster-Debias, to mitigate this bias. We explore the strengths and weaknesses of our method, finding that it significantly outperforms other existing debiasing approaches on a variety of upstream bias tests but achieves limited improvement on decreasing gender bias in a downstream task. This indicates that word embeddings encode gender bias in still other ways, not necessarily captured by upstream tests.