Abstract:Membership inference attacks (MIAs) on diffusion models have emerged as potential evidence of unauthorized data usage in training pre-trained diffusion models. These attacks aim to detect the presence of specific images in training datasets of diffusion models. Our study delves into the evaluation of state-of-the-art MIAs on diffusion models and reveals critical flaws and overly optimistic performance estimates in existing MIA evaluation. We introduce CopyMark, a more realistic MIA benchmark that distinguishes itself through the support for pre-trained diffusion models, unbiased datasets, and fair evaluation pipelines. Through extensive experiments, we demonstrate that the effectiveness of current MIA methods significantly degrades under these more practical conditions. Based on our results, we alert that MIA, in its current state, is not a reliable approach for identifying unauthorized data usage in pre-trained diffusion models. To the best of our knowledge, we are the first to discover the performance overestimation of MIAs on diffusion models and present a unified benchmark for more realistic evaluation. Our code is available on GitHub: \url{https://github.com/caradryanl/CopyMark}.
Abstract:Diffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot generation where a pretrained model is fine-tuned on a small set of images to capture a specific style or object. Despite their success, concerns exist about potential copyright violations stemming from the use of unauthorized data in this process. In response, we present Contrasting Gradient Inversion for Diffusion Models (CGI-DM), a novel method featuring vivid visual representations for digital copyright authentication. Our approach involves removing partial information of an image and recovering missing details by exploiting conceptual differences between the pretrained and fine-tuned models. We formulate the differences as KL divergence between latent variables of the two models when given the same input image, which can be maximized through Monte Carlo sampling and Projected Gradient Descent (PGD). The similarity between original and recovered images serves as a strong indicator of potential infringements. Extensive experiments on the WikiArt and Dreambooth datasets demonstrate the high accuracy of CGI-DM in digital copyright authentication, surpassing alternative validation techniques. Code implementation is available at https://github.com/Nicholas0228/Revelio.
Abstract:Latent Diffusion Model (LDM) has emerged as a leading tool in image generation, particularly with its capability in few-shot generation. This capability also presents risks, notably in unauthorized artwork replication and misinformation generation. In response, adversarial attacks have been designed to safeguard personal images from being used as reference data. However, existing adversarial attacks are predominantly empirical, lacking a solid theoretical foundation. In this paper, we introduce a comprehensive theoretical framework for understanding adversarial attacks on LDM. Based on the framework, we propose a novel adversarial attack that exploits a unified target to guide the adversarial attack both in the forward and the reverse process of LDM. We provide empirical evidences that our method overcomes the offset problem of the optimization of adversarial attacks in existing methods. Through rigorous experiments, our findings demonstrate that our method outperforms current attacks and is able to generalize over different state-of-the-art few-shot generation pipelines based on LDM. Our method can serve as a stronger and efficient tool for people exposed to the risk of data privacy and security to protect themselves in the new era of powerful generative models. The code is available on GitHub: https://github.com/CaradryanLiang/ImprovedAdvDM.git.
Abstract:This paper proposes the fine-grained traffic prediction task (e.g. interval between data points is 1 minute), which is essential to traffic-related downstream applications. Under this setting, traffic flow is highly influenced by traffic signals and the correlation between traffic nodes is dynamic. As a result, the traffic data is non-smooth between nodes, and hard to utilize previous methods which focus on smooth traffic data. To address this problem, we propose Fine-grained Deep Traffic Inference, termed as FDTI. Specifically, we construct a fine-grained traffic graph based on traffic signals to model the inter-road relations. Then, a physically-interpretable dynamic mobility convolution module is proposed to capture vehicle moving dynamics controlled by the traffic signals. Furthermore, traffic flow conservation is introduced to accurately infer future volume. Extensive experiments demonstrate that our method achieves state-of-the-art performance and learned traffic dynamics with good properties. To the best of our knowledge, we are the first to conduct the city-level fine-grained traffic prediction.
Abstract:Diffusion Models (DMs) have empowered great success in artificial-intelligence-generated content, especially in artwork creation, yet raising new concerns in intellectual properties and copyright. For example, infringers can make profits by imitating non-authorized human-created paintings with DMs. Recent researches suggest that various adversarial examples for diffusion models can be effective tools against these copyright infringements. However, current adversarial examples show weakness in transferability over different painting-imitating methods and robustness under straightforward adversarial defense, for example, noise purification. We surprisingly find that the transferability of adversarial examples can be significantly enhanced by exploiting a fused and modified adversarial loss term under consistent parameters. In this work, we comprehensively evaluate the cross-method transferability of adversarial examples. The experimental observation shows that our method generates more transferable adversarial examples with even stronger robustness against the simple adversarial defense.
Abstract:Diffusion Models (DMs) achieve state-of-the-art performance in generative tasks, boosting a wave in AI for Art. Despite the success of commercialization, DMs meanwhile provide tools for copyright violations, where infringers benefit from illegally using paintings created by human artists to train DMs and generate novel paintings in a similar style. In this paper, we show that it is possible to create an image $x'$ that is similar to an image $x$ for human vision but unrecognizable for DMs. We build a framework to define and evaluate this adversarial example for diffusion models. Based on the framework, we further propose AdvDM, an algorithm to generate adversarial examples for DMs. By optimizing upon different latent variables sampled from the reverse process of DMs, AdvDM conducts a Monte-Carlo estimation of adversarial examples for DMs. Extensive experiments show that the estimated adversarial examples can effectively hinder DMs from extracting their features. Our method can be a powerful tool for human artists to protect their copyright against infringers with DM-based AI-for-Art applications.
Abstract:Traffic simulation provides interactive data for the optimization of traffic policies. However, existing traffic simulators are limited by their lack of scalability and shortage in input data, which prevents them from generating interactive data from traffic simulation in the scenarios of real large-scale city road networks. In this paper, we present City Brain Lab, a toolkit for scalable traffic simulation. CBLab is consist of three components: CBEngine, CBData, and CBScenario. CBEngine is a highly efficient simulators supporting large scale traffic simulation. CBData includes a traffic dataset with road network data of 100 cities all around the world. We also develop a pipeline to conduct one-click transformation from raw road networks to input data of our traffic simulation. Combining CBEngine and CBData allows researchers to run scalable traffic simulation in the road network of real large-scale cities. Based on that, CBScenario implements an interactive environment and several baseline methods for two scenarios of traffic policies respectively, with which traffic policies adaptable for large-scale urban traffic can be trained and tuned. To the best of our knowledge, CBLab is the first infrastructure supporting traffic policy optimization on large-scale urban scenarios. The code is available on Github: https://github.com/CityBrainLab/CityBrainLab.git.