https://github.com/CaradryanLiang/ImprovedAdvDM.git.
Latent Diffusion Model (LDM) has emerged as a leading tool in image generation, particularly with its capability in few-shot generation. This capability also presents risks, notably in unauthorized artwork replication and misinformation generation. In response, adversarial attacks have been designed to safeguard personal images from being used as reference data. However, existing adversarial attacks are predominantly empirical, lacking a solid theoretical foundation. In this paper, we introduce a comprehensive theoretical framework for understanding adversarial attacks on LDM. Based on the framework, we propose a novel adversarial attack that exploits a unified target to guide the adversarial attack both in the forward and the reverse process of LDM. We provide empirical evidences that our method overcomes the offset problem of the optimization of adversarial attacks in existing methods. Through rigorous experiments, our findings demonstrate that our method outperforms current attacks and is able to generalize over different state-of-the-art few-shot generation pipelines based on LDM. Our method can serve as a stronger and efficient tool for people exposed to the risk of data privacy and security to protect themselves in the new era of powerful generative models. The code is available on GitHub: