Ant Group
Abstract:Research on text simplification has primarily focused on lexical and sentence-level changes. Long document-level simplification (DS) is still relatively unexplored. Large Language Models (LLMs), like ChatGPT, have excelled in many natural language processing tasks. However, their performance on DS tasks is unsatisfactory, as they often treat DS as merely document summarization. For the DS task, the generated long sequences not only must maintain consistency with the original document throughout, but complete moderate simplification operations encompassing discourses, sentences, and word-level simplifications. Human editors employ a hierarchical complexity simplification strategy to simplify documents. This study delves into simulating this strategy through the utilization of a multi-stage collaboration using LLMs. We propose a progressive simplification method (ProgDS) by hierarchically decomposing the task, including the discourse-level, topic-level, and lexical-level simplification. Experimental results demonstrate that ProgDS significantly outperforms existing smaller models or direct prompting with LLMs, advancing the state-of-the-art in the document simplification task.
Abstract:Open-domain Question Answering (QA) has garnered substantial interest by combining the advantages of faithfully retrieved passages and relevant passages generated through Large Language Models (LLMs). However, there is a lack of definitive labels available to pair these sources of knowledge. In order to address this issue, we propose an unsupervised and simple framework called Bi-Reranking for Merging Generated and Retrieved Knowledge (BRMGR), which utilizes re-ranking methods for both retrieved passages and LLM-generated passages. We pair the two types of passages using two separate re-ranking methods and then combine them through greedy matching. We demonstrate that BRMGR is equivalent to employing a bipartite matching loss when assigning each retrieved passage with a corresponding LLM-generated passage. The application of our model yielded experimental results from three datasets, improving their performance by +1.7 and +1.6 on NQ and WebQ datasets, respectively, and obtaining comparable result on TriviaQA dataset when compared to competitive baselines.
Abstract:In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection. Meanwhile, the need to systematically understand how LLMs can further revolutionize the field also becomes urgent. In this work, we--a multidisciplinary team of researchers spanning computer science and political science--present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science. Specifically, we first introduce a fundamental taxonomy classifying the existing explorations into two perspectives: political science and computational methodologies. In particular, from the political science perspective, we highlight the role of LLMs in automating predictive and generative tasks, simulating behavior dynamics, and improving causal inference through tools like counterfactual generation; from a computational perspective, we introduce advancements in data preparation, fine-tuning, and evaluation methods for LLMs that are tailored to political contexts. We identify key challenges and future directions, emphasizing the development of domain-specific datasets, addressing issues of bias and fairness, incorporating human expertise, and redefining evaluation criteria to align with the unique requirements of computational political science. Political-LLM seeks to serve as a guidebook for researchers to foster an informed, ethical, and impactful use of Artificial Intelligence in political science. Our online resource is available at: http://political-llm.org/.
Abstract:Computer simulations have long presented the exciting possibility of scientific insight into complex real-world processes. Despite the power of modern computing, however, it remains challenging to systematically perform inference under simulation models. This has led to the rise of simulation-based inference (SBI), a class of machine learning-enabled techniques for approaching inverse problems with stochastic simulators. Many such methods, however, require large numbers of simulation samples and face difficulty scaling to high-dimensional settings, often making inference prohibitive under resource-intensive simulators. To mitigate these drawbacks, we introduce active sequential neural posterior estimation (ASNPE). ASNPE brings an active learning scheme into the inference loop to estimate the utility of simulation parameter candidates to the underlying probabilistic model. The proposed acquisition scheme is easily integrated into existing posterior estimation pipelines, allowing for improved sample efficiency with low computational overhead. We further demonstrate the effectiveness of the proposed method in the travel demand calibration setting, a high-dimensional inverse problem commonly requiring computationally expensive traffic simulators. Our method outperforms well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-scale real-world traffic network, as well as demonstrates a performance advantage over non-active counterparts on a suite of SBI benchmark environments.
Abstract:3D vision-language (VL) reasoning has gained significant attention due to its potential to bridge the 3D physical world with natural language descriptions. Existing approaches typically follow task-specific, highly specialized paradigms. Therefore, these methods focus on a limited range of reasoning sub-tasks and rely heavily on the hand-crafted modules and auxiliary losses. This highlights the need for a simpler, unified and general-purpose model. In this paper, we leverage the inherent connection between 3D scene graphs and natural language, proposing a 3D scene graph-guided vision-language pre-training (VLP) framework. Our approach utilizes modality encoders, graph convolutional layers and cross-attention layers to learn universal representations that adapt to a variety of 3D VL reasoning tasks, thereby eliminating the need for task-specific designs. The pre-training objectives include: 1) Scene graph-guided contrastive learning, which leverages the strong correlation between 3D scene graphs and natural language to align 3D objects with textual features at various fine-grained levels; and 2) Masked modality learning, which uses cross-modality information to reconstruct masked words and 3D objects. Instead of directly reconstructing the 3D point clouds of masked objects, we use position clues to predict their semantic categories. Extensive experiments demonstrate that our pre-training model, when fine-tuned on several downstream tasks, achieves performance comparable to or better than existing methods in tasks such as 3D visual grounding, 3D dense captioning, and 3D question answering.
Abstract:Literature reviews play a crucial role in scientific research for understanding the current state of research, identifying gaps, and guiding future studies on specific topics. However, the process of conducting a comprehensive literature review is yet time-consuming. This paper proposes a novel framework, collaborative knowledge minigraph agents (CKMAs), to automate scholarly literature reviews. A novel prompt-based algorithm, the knowledge minigraph construction agent (KMCA), is designed to identify relationships between information pieces from academic literature and automatically constructs knowledge minigraphs. By leveraging the capabilities of large language models on constructed knowledge minigraphs, the multiple path summarization agent (MPSA) efficiently organizes information pieces and relationships from different viewpoints to generate literature review paragraphs. We evaluate CKMAs on three benchmark datasets. Experimental results demonstrate that the proposed techniques generate informative, complete, consistent, and insightful summaries for different research problems, promoting the use of LLMs in more professional fields.
Abstract:This article presents the design of an open-API-based explainable AI (XAI) service to provide feature contribution explanations for cloud AI services. Cloud AI services are widely used to develop domain-specific applications with precise learning metrics. However, the underlying cloud AI services remain opaque on how the model produces the prediction. We argue that XAI operations are accessible as open APIs to enable the consolidation of the XAI operations into the cloud AI services assessment. We propose a design using a microservice architecture that offers feature contribution explanations for cloud AI services without unfolding the network structure of the cloud models. We can also utilize this architecture to evaluate the model performance and XAI consistency metrics showing cloud AI services trustworthiness. We collect provenance data from operational pipelines to enable reproducibility within the XAI service. Furthermore, we present the discovery scenarios for the experimental tests regarding model performance and XAI consistency metrics for the leading cloud vision AI services. The results confirm that the architecture, based on open APIs, is cloud-agnostic. Additionally, data augmentations result in measurable improvements in XAI consistency metrics for cloud AI services.
Abstract:The Mixture of Experts (MoE) is an advanced model architecture in the industry that combines multiple specialized expert models from various domains into a single supermodel. This approach enables the model to scale without significantly increasing the computational costs of training and inference, while maximizing model performance. However, current distributed training frameworks do not consider the ultimate optimization of communication, especially for large base models. This paper proposes a network-traffic-aware parallel optimization method that selects the optimal parallel strategy based on the communication volume, and the training cluster's inter-node and intra-node network topologies. Compared to the DeepSpeed, MoNTA achieves an 8x increase in AllToAll communication performance under 8-card tensor parallelism. Compared to the baseline, training a 2x70B model using 16 A800 cards, with an 8K sequence, results in a 13% overall latency performance improvement. Project Page: https://github.com/EnflameTechnology/DeepSpeed.
Abstract:Transformer-based models have achieved state-of-the-art performance in various computer vision tasks, including image and video analysis. However, Transformer's complex architecture and black-box nature pose challenges for explainability, a crucial aspect for real-world applications and scientific inquiry. Current Explainable AI (XAI) methods can only provide one-dimensional feature importance, either spatial or temporal explanation, with significant computational complexity. This paper introduces STAA (Spatio-Temporal Attention Attribution), an XAI method for interpreting video Transformer models. Differ from traditional methods that separately apply image XAI techniques for spatial features or segment contribution analysis for temporal aspects, STAA offers both spatial and temporal information simultaneously from attention values in Transformers. The study utilizes the Kinetics-400 dataset, a benchmark collection of 400 human action classes used for action recognition research. We introduce metrics to quantify explanations. We also apply optimization to enhance STAA's raw output. By implementing dynamic thresholding and attention focusing mechanisms, we improve the signal-to-noise ratio in our explanations, resulting in more precise visualizations and better evaluation results. In terms of computational overhead, our method requires less than 3\% of the computational resources of traditional XAI methods, making it suitable for real-time video XAI analysis applications. STAA contributes to the growing field of XAI by offering a method for researchers and practitioners to analyze Transformer models.
Abstract:Multi-modality (MM) semi-supervised learning (SSL) based medical image segmentation has recently gained increasing attention for its ability to utilize MM data and reduce reliance on labeled images. However, current methods face several challenges: (1) Complex network designs hinder scalability to scenarios with more than two modalities. (2) Focusing solely on modality-invariant representation while neglecting modality-specific features, leads to incomplete MM learning. (3) Leveraging unlabeled data with generative methods can be unreliable for SSL. To address these problems, we propose Double Bank Dual Consistency (DBDC), a novel MM-SSL approach for medical image segmentation. To address challenge (1), we propose a modality all-in-one segmentation network that accommodates data from any number of modalities, removing the limitation on modality count. To address challenge (2), we design two learnable plug-in banks, Modality-Level Modulation bank (MLMB) and Modality-Level Prototype (MLPB) bank, to capture both modality-invariant and modality-specific knowledge. These banks are updated using our proposed Modality Prototype Contrastive Learning (MPCL). Additionally, we design Modality Adaptive Weighting (MAW) to dynamically adjust learning weights for each modality, ensuring balanced MM learning as different modalities learn at different rates. Finally, to address challenge (3), we introduce a Dual Consistency (DC) strategy that enforces consistency at both the image and feature levels without relying on generative methods. We evaluate our method on a 2-to-4 modality segmentation task using three open-source datasets, and extensive experiments show that our method outperforms state-of-the-art approaches.