Abstract:Large language models (LLMs) have demonstrated remarkable capabilities, but they also pose risks related to the generation of toxic or harmful content. This work introduces Precision Knowledge Editing (PKE), an advanced technique that builds upon existing knowledge editing methods to more effectively identify and modify toxic parameter regions within LLMs. By leveraging neuron weight tracking and activation pathway tracing, PKE achieves finer granularity in toxic content management compared to previous methods like Detoxifying Instance Neuron Modification (DINM). Our experiments demonstrate that PKE significantly reduces the attack success rate (ASR) across various models, including Llama2-7b and Llama-3-8b-instruct, while maintaining overall model performance. Additionally, we also compared the performance of some closed-source models (gpt-4-0613 and Claude 3 Sonnet) in our experiments, and found that models adjusted using our method far outperformed the closed-source models in terms of safety. This research contributes to the ongoing efforts to make LLMs safer and more reliable for real-world applications.
Abstract:Large language models (LLMs) have shown success in generating high-quality responses. In order to achieve better alignment with LLMs with human preference, various works are proposed based on specific optimization process, which, however, is not suitable to Black-Box LLMs like GPT-4, due to inaccessible parameters. In Black-Box LLMs case, their performance is highly dependent on the quality of the provided prompts. Existing methods to enhance response quality often involve a prompt refinement model, yet these approaches potentially suffer from semantic inconsistencies between the refined and original prompts, and typically overlook the relationship between them. To address these challenges, we introduce a self-instructed in-context learning framework that empowers LLMs to deliver more effective responses by generating reliable derived prompts to construct informative contextual environments. Our approach incorporates a self-instructed reinforcement learning mechanism, enabling direct interaction with the response model during derived prompt generation for better alignment. We then formulate querying as an in-context learning task, using responses from LLMs combined with the derived prompts to establish a contextual demonstration for the original prompt. This strategy ensures alignment with the original query, reduces discrepancies from refined prompts, and maximizes the LLMs' in-context learning capability. Extensive experiments demonstrate that the proposed method not only generates more reliable derived prompts but also significantly enhances LLMs' ability to deliver more effective responses, including Black-Box models such as GPT-4.
Abstract:Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either fine-tune large language models (LLMs) or build large-scale time-series datasets to develop TSF foundation models. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. In this paper, we explore a new road to building a TSF foundation model from rich and high-quality natural images, based on the intrinsic similarities between images and time series. To bridge the gap between the two domains, we reformulate the TSF task as an image reconstruction task, which is further processed by a visual masked autoencoder (MAE) self-supervised pre-trained on the ImageNet dataset. Surprisingly, without further adaptation in the time-series domain, the proposed VisionTS could achieve superior zero-shot forecasting performance compared to existing TSF foundation models. With minimal fine-tuning, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. These findings suggest that visual models could be a free lunch for TSF and highlight the potential for future cross-domain research between computer vision and TSF. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
Abstract:Large Language Models (LLMs) have become a focal point in the rapidly evolving field of artificial intelligence. However, a critical concern is the presence of toxic content within the pre-training corpus of these models, which can lead to the generation of inappropriate outputs. Investigating methods for detecting internal faults in LLMs can help us understand their limitations and improve their security. Existing methods primarily focus on jailbreaking attacks, which involve manually or automatically constructing adversarial content to prompt the target LLM to generate unexpected responses. These methods rely heavily on prompt engineering, which is time-consuming and usually requires specially designed questions. To address these challenges, this paper proposes a target-driven attack paradigm that focuses on directly eliciting the target response instead of optimizing the prompts. We introduce the use of another LLM as the detector for toxic content, referred to as ToxDet. Given a target toxic response, ToxDet can generate a possible question and a preliminary answer to provoke the target model into producing desired toxic responses with meanings equivalent to the provided one. ToxDet is trained by interacting with the target LLM and receiving reward signals from it, utilizing reinforcement learning for the optimization process. While the primary focus of the target models is on open-source LLMs, the fine-tuned ToxDet can also be transferred to attack black-box models such as GPT-4o, achieving notable results. Experimental results on AdvBench and HH-Harmless datasets demonstrate the effectiveness of our methods in detecting the tendencies of target LLMs to generate harmful responses. This algorithm not only exposes vulnerabilities but also provides a valuable resource for researchers to strengthen their models against such attacks.
Abstract:Real-world datasets usually are class-imbalanced and corrupted by label noise. To solve the joint issue of long-tailed distribution and label noise, most previous works usually aim to design a noise detector to distinguish the noisy and clean samples. Despite their effectiveness, they may be limited in handling the joint issue effectively in a unified way. In this work, we develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching, which can be solved with optimal transport (OT). By setting a manually-specific probability measure and using a learned transport plan to pseudo-label the training samples, the proposed method can reduce the side-effects of noisy and long-tailed data simultaneously. Then we introduce a simple yet effective filter criteria by combining the observed labels and pseudo labels to obtain a more balanced and less noisy subset for a robust model training. Extensive experiments demonstrate that our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
Abstract:Parameter-efficient fine-tuning (PEFT) has emerged as an effective method for adapting pre-trained language models to various tasks efficiently. Recently, there has been a growing interest in transferring knowledge from one or multiple tasks to the downstream target task to achieve performance improvements. However, current approaches typically either train adapters on individual tasks or distill shared knowledge from source tasks, failing to fully exploit task-specific knowledge and the correlation between source and target tasks. To overcome these limitations, we propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning. PEMT extends the mixture-of-experts (MoE) framework to capture the transferable knowledge as a weighted combination of adapters trained on source tasks. These weights are determined by a gated unit, measuring the correlation between the target and each source task using task description prompt vectors. To fully exploit the task-specific knowledge, we also propose the Task Sparsity Loss to improve the sparsity of the gated unit. We conduct experiments on a broad range of tasks over 17 datasets. The experimental results demonstrate our PEMT yields stable improvements over full fine-tuning, and state-of-the-art PEFT and knowledge transferring methods on various tasks. The results highlight the effectiveness of our method which is capable of sufficiently exploiting the knowledge and correlation features across multiple tasks.
Abstract:The integration of Large Language Models (LLMs) with Graph Representation Learning (GRL) marks a significant evolution in analyzing complex data structures. This collaboration harnesses the sophisticated linguistic capabilities of LLMs to improve the contextual understanding and adaptability of graph models, thereby broadening the scope and potential of GRL. Despite a growing body of research dedicated to integrating LLMs into the graph domain, a comprehensive review that deeply analyzes the core components and operations within these models is notably lacking. Our survey fills this gap by proposing a novel taxonomy that breaks down these models into primary components and operation techniques from a novel technical perspective. We further dissect recent literature into two primary components including knowledge extractors and organizers, and two operation techniques including integration and training stratigies, shedding light on effective model design and training strategies. Additionally, we identify and explore potential future research avenues in this nascent yet underexplored field, proposing paths for continued progress.
Abstract:We introduce a novel large-scale scene reconstruction benchmark using the newly developed 3D representation approach, Gaussian Splatting, on our expansive U-Scene dataset. U-Scene encompasses over one and a half square kilometres, featuring a comprehensive RGB dataset coupled with LiDAR ground truth. For data acquisition, we employed the Matrix 300 drone equipped with the high-accuracy Zenmuse L1 LiDAR, enabling precise rooftop data collection. This dataset, offers a unique blend of urban and academic environments for advanced spatial analysis convers more than 1.5 km$^2$. Our evaluation of U-Scene with Gaussian Splatting includes a detailed analysis across various novel viewpoints. We also juxtapose these results with those derived from our accurate point cloud dataset, highlighting significant differences that underscore the importance of combine multi-modal information
Abstract:Recent years have witnessed the success of introducing Transformers to time series forecasting. From a data generation perspective, we illustrate that existing Transformers are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigm. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained Transformer model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy is able to achieve an optimal equilibrium between bias and variance. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of Transformers. Extensive experiments show that SOLID consistently enhances the performance of current SOTA Transformers on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validate the effectiveness of the calibration approach.
Abstract:Current synthetic speech detection (SSD) methods perform well on certain datasets but still face issues of robustness and interpretability. A possible reason is that these methods do not analyze the deficiencies of synthetic speech. In this paper, the flaws of the speaker features inherent in the text-to-speech (TTS) process are analyzed. Differences in the temporal consistency of intra-utterance speaker features arise due to the lack of fine-grained control over speaker features in TTS. Since the speaker representations in TTS are based on speaker embeddings extracted by encoders, the distribution of inter-utterance speaker features differs between synthetic and bonafide speech. Based on these analyzes, an SSD method based on temporal consistency and distribution of speaker features is proposed. On one hand, modeling the temporal consistency of intra-utterance speaker features can aid speech anti-spoofing. On the other hand, distribution differences in inter-utterance speaker features can be utilized for SSD. The proposed method offers low computational complexity and performs well in both cross-dataset and silence trimming scenarios.