JD.com
Abstract:Large vision-language models (LVLMs) have made significant strides in addressing complex video tasks, sparking researchers' interest in their human-like multimodal understanding capabilities. Video description serves as a fundamental task for evaluating video comprehension, necessitating a deep understanding of spatial and temporal dynamics, which presents challenges for both humans and machines. Thus, investigating whether LVLMs can describe videos as comprehensively as humans (through reasonable human-machine comparisons using video captioning as a proxy task) will enhance our understanding and application of these models. However, current benchmarks for video comprehension have notable limitations, including short video durations, brief annotations, and reliance on a single annotator's perspective. These factors hinder a comprehensive assessment of LVLMs' ability to understand complex, lengthy videos and prevent the establishment of a robust human baseline that accurately reflects human video comprehension capabilities. To address these issues, we propose a novel benchmark, FIOVA (Five In One Video Annotations), designed to evaluate the differences between LVLMs and human understanding more comprehensively. FIOVA includes 3,002 long video sequences (averaging 33.6 seconds) that cover diverse scenarios with complex spatiotemporal relationships. Each video is annotated by five distinct annotators, capturing a wide range of perspectives and resulting in captions that are 4-15 times longer than existing benchmarks, thereby establishing a robust baseline that represents human understanding comprehensively for the first time in video description tasks. Using the FIOVA benchmark, we conducted an in-depth evaluation of six state-of-the-art LVLMs, comparing their performance with humans. More detailed information can be found at https://huuuuusy.github.io/fiova/.
Abstract:Gait recognition is a remote biometric technology that utilizes the dynamic characteristics of human movement to identify individuals even under various extreme lighting conditions. Due to the limitation in spatial perception capability inherent in 2D gait representations, LiDAR can directly capture 3D gait features and represent them as point clouds, reducing environmental and lighting interference in recognition while significantly advancing privacy protection. For complex 3D representations, shallow networks fail to achieve accurate recognition, making vision Transformers the foremost prevalent method. However, the prevalence of dumb patches has limited the widespread use of Transformer architecture in gait recognition. This paper proposes a method named HorGait, which utilizes a hybrid model with a Transformer architecture for gait recognition on the planar projection of 3D point clouds from LiDAR. Specifically, it employs a hybrid model structure called LHM Block to achieve input adaptation, long-range, and high-order spatial interaction of the Transformer architecture. Additionally, it uses large convolutional kernel CNNs to segment the input representation, replacing attention windows to reduce dumb patches. We conducted extensive experiments, and the results show that HorGait achieves state-of-the-art performance among Transformer architecture methods on the SUSTech1K dataset, verifying that the hybrid model can complete the full Transformer process and perform better in point cloud planar projection. The outstanding performance of HorGait offers new insights for the future application of the Transformer architecture in gait recognition.
Abstract:Diffusion Models (DMs) achieve state-of-the-art synthesis results in image generation and have been applied to various fields. However, DMs sometimes seriously violate user privacy during usage, making the protection of privacy an urgent issue. Using traditional privacy computing schemes like Secure Multi-Party Computation (MPC) directly in DMs faces significant computation and communication challenges. To address these issues, we propose CipherDM, the first novel, versatile and universal framework applying MPC technology to DMs for secure sampling, which can be widely implemented on multiple DM based tasks. We thoroughly analyze sampling latency breakdown, find time-consuming parts and design corresponding secure MPC protocols for computing nonlinear activations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular architectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers. Compared to direct implementation on SPU, our approach improves running time by approximately 1.084\times \sim 2.328\times, and reduces communication costs by approximately 1.212\times \sim 1.791\times.
Abstract:To address the challenges of similarity between lesions and surrounding tissues, overlapping appearances of partially benign and malignant nodules, and difficulty in classification, a deep learning network that integrates CNN and Transformer is proposed for the classification of benign and malignant breast lesions in ultrasound images. This network adopts a dual-branch architecture for local-global feature extraction, making full use of the advantages of CNN in extracting local features and the ability of ViT to extract global features to enhance the network's feature extraction capabilities for breast nodules. The local feature extraction branch employs a residual network with multiple attention-guided modules, which can effectively capture the local details and texture features of breast nodules, enhance sensitivity to subtle changes within the nodules, and thus can aid in accurate classification of their benign and malignancy. The global feature extraction branch utilizes the multi-head self-attention ViT network, which can capture the overall shape, boundary, and relationship with surrounding tissues, and thereby enhancing the understanding and modeling of both nodule and global image features. Experimental results on a public ultrasound breast nodule data set show that the proposed method is better than other comparison networks, This indicates that the fusion of CNN and Transformer networks can effectively improve the performance of the classification model and provide a powerful solution for the benign-malignant classification of ultrasound breast.
Abstract:Large language models (LLMs) face issues in handling factual knowledge, making it vital to evaluate their true ability to understand facts. In this study, we introduce knowledge probing frameworks, BELIEF(-ICL), to evaluate the knowledge understanding ability of not only encoder-based PLMs but also decoder-based PLMs from diverse perspectives. BELIEFs utilize a multi-prompt dataset to evaluate PLM's accuracy, consistency, and reliability in factual knowledge understanding. To provide a more reliable evaluation with BELIEFs, we semi-automatically create MyriadLAMA, which has more diverse prompts than existing datasets. We validate the effectiveness of BELIEFs in correctly and comprehensively evaluating PLM's factual understanding ability through extensive evaluations. We further investigate key factors in learning facts in LLMs, and reveal the limitation of the prompt-based knowledge probing. The dataset is anonymously publicized.
Abstract:Beyond the exploration of traditional spatial, temporal and subjective visual signal redundancy in image and video compression, recent research has focused on leveraging cross-color component redundancy to enhance coding efficiency. Cross-component coding approaches are motivated by the statistical correlations among different color components, such as those in the Y'CbCr color space, where luma (Y) color component typically exhibits finer details than chroma (Cb/Cr) color components. Inspired by previous cross-component coding algorithms, this paper introduces a novel in-loop filtering approach named Cross-Component Sample Offset (CCSO). CCSO utilizes co-located and neighboring luma samples to generate correction signals for both luma and chroma reconstructed samples. It is a multiplication-free, non-linear mapping process implemented using a look-up-table. The input to the mapping is a group of reconstructed luma samples, and the output is an offset value applied on the center luma or co-located chroma sample. Experimental results demonstrate that the proposed CCSO can be applied to both image and video coding, resulting in improved coding efficiency and visual quality. The method has been adopted into an experimental next-generation video codec beyond AV1 developed by the Alliance for Open Media (AOMedia), achieving significant objective coding gains up to 3.5\,\% and 1.8\,\% for PSNR and VMAF quality metrics, respectively, under random access configuration. Additionally, CCSO notably improves the subjective visual quality.
Abstract:The success of Reinforcement Learning from Human Feedback (RLHF) in language model alignment is critically dependent on the capability of the reward model (RM). However, as the training process progresses, the output distribution of the policy model shifts, leading to the RM's reduced ability to distinguish between responses. This issue is further compounded when the RM, trained on a specific data distribution, struggles to generalize to examples outside of that distribution. These two issues can be united as a challenge posed by the shifted distribution of the environment. To surmount this challenge, we introduce MetaRM, a method leveraging meta-learning to align the RM with the shifted environment distribution. MetaRM is designed to train the RM by minimizing data loss, particularly for data that can improve the differentiation ability to examples of the shifted target distribution. Extensive experiments demonstrate that MetaRM significantly improves the RM's distinguishing ability in iterative RLHF optimization, and also provides the capacity to identify subtle differences in out-of-distribution samples.
Abstract:To capture user preference, transformer models have been widely applied to model sequential user behavior data. The core of transformer architecture lies in the self-attention mechanism, which computes the pairwise attention scores in a sequence. Due to the permutation-equivariant nature, positional encoding is used to enhance the attention between token representations. In this setting, the pairwise attention scores can be derived by both semantic difference and positional difference. However, prior studies often model the two kinds of difference measurements in different ways, which potentially limits the expressive capacity of sequence modeling. To address this issue, this paper proposes a novel transformer variant with complex vector attention, named EulerFormer, which provides a unified theoretical framework to formulate both semantic difference and positional difference. The EulerFormer involves two key technical improvements. First, it employs a new transformation function for efficiently transforming the sequence tokens into polar-form complex vectors using Euler's formula, enabling the unified modeling of both semantic and positional information in a complex rotation form.Secondly, it develops a differential rotation mechanism, where the semantic rotation angles can be controlled by an adaptation function, enabling the adaptive integration of the semantic and positional information according to the semantic contexts.Furthermore, a phase contrastive learning task is proposed to improve the isotropy of contextual representations in EulerFormer. Our theoretical framework possesses a high degree of completeness and generality. It is more robust to semantic variations and possesses moresuperior theoretical properties in principle. Extensive experiments conducted on four public datasets demonstrate the effectiveness and efficiency of our approach.
Abstract:Retrosynthesis planning poses a formidable challenge in the organic chemical industry, particularly in pharmaceuticals. Single-step retrosynthesis prediction, a crucial step in the planning process, has witnessed a surge in interest in recent years due to advancements in AI for science. Various deep learning-based methods have been proposed for this task in recent years, incorporating diverse levels of additional chemical knowledge dependency. This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction. By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules. Based on the fact that the majority of molecule structures remain unchanged during a chemical reaction, we propose a simple yet effective SMILES alignment technique to facilitate the reuse of unchanged structures for reactant generation. Extensive experiments show that our method substantially outperforms state-of-the-art template-free and semi-template-based approaches. Importantly, Our template-free method achieves effectiveness comparable to, or even surpasses, established powerful template-based methods. Scientific contribution: We present a novel graph-to-sequence template-free retrosynthesis prediction pipeline that overcomes the limitations of Transformer-based methods in molecular representation learning and insufficient utilization of chemical information. We propose an unsupervised learning mechanism for establishing product-atom correspondence with reactant SMILES tokens, achieving even better results than supervised SMILES alignment methods. Extensive experiments demonstrate that UAlign significantly outperforms state-of-the-art template-free methods and rivals or surpasses template-based approaches, with up to 5\% (top-5) and 5.4\% (top-10) increased accuracy over the strongest baseline.
Abstract:Recently, some large kernel convnets strike back with appealing performance and efficiency. However, given the square complexity of convolution, scaling up kernels can bring about an enormous amount of parameters and the proliferated parameters can induce severe optimization problem. Due to these issues, current CNNs compromise to scale up to 51x51 in the form of stripe convolution (i.e., 51x5 + 5x51) and start to saturate as the kernel size continues growing. In this paper, we delve into addressing these vital issues and explore whether we can continue scaling up kernels for more performance gains. Inspired by human vision, we propose a human-like peripheral convolution that efficiently reduces over 90% parameter count of dense grid convolution through parameter sharing, and manage to scale up kernel size to extremely large. Our peripheral convolution behaves highly similar to human, reducing the complexity of convolution from O(K^2) to O(logK) without backfiring performance. Built on this, we propose Parameter-efficient Large Kernel Network (PeLK). Our PeLK outperforms modern vision Transformers and ConvNet architectures like Swin, ConvNeXt, RepLKNet and SLaK on various vision tasks including ImageNet classification, semantic segmentation on ADE20K and object detection on MS COCO. For the first time, we successfully scale up the kernel size of CNNs to an unprecedented 101x101 and demonstrate consistent improvements.