Abstract:Recently, 3D Gaussian Splatting (3DGS) has emerged as a significant advancement in 3D scene reconstruction, attracting considerable attention due to its ability to recover high-fidelity details while maintaining low complexity. Despite the promising results achieved by 3DGS, its rendering performance is constrained by its dependence on costly non-commutative alpha-blending operations. These operations mandate complex view dependent sorting operations that introduce computational overhead, especially on the resource-constrained platforms such as mobile phones. In this paper, we propose Weighted Sum Rendering, which approximates alpha blending with weighted sums, thereby removing the need for sorting. This simplifies implementation, delivers superior performance, and eliminates the "popping" artifacts caused by sorting. Experimental results show that optimizing a generalized Gaussian splatting formulation to the new differentiable rendering yields competitive image quality. The method was implemented and tested in a mobile device GPU, achieving on average $1.23\times$ faster rendering.
Abstract:The rise of new video modalities like virtual reality or autonomous driving has increased the demand for efficient multi-view video compression methods, both in terms of rate-distortion (R-D) performance and in terms of delay and runtime. While most recent stereo video compression approaches have shown promising performance, they compress left and right views sequentially, leading to poor parallelization and runtime performance. This work presents Low-Latency neural codec for Stereo video Streaming (LLSS), a novel parallel stereo video coding method designed for fast and efficient low-latency stereo video streaming. Instead of using a sequential cross-view motion compensation like existing methods, LLSS introduces a bidirectional feature shifting module to directly exploit mutual information among views and encode them effectively with a joint cross-view prior model for entropy coding. Thanks to this design, LLSS processes left and right views in parallel, minimizing latency; all while substantially improving R-D performance compared to both existing neural and conventional codecs.
Abstract:Video compression systems must support increasing bandwidth and data throughput at low cost and power, and can be limited by entropy coding bottlenecks. Efficiency can be greatly improved by parallelizing coding, which can be done at much larger scales with new neural-based codecs, but with some compression loss related to data organization. We analyze the bit rate overhead needed to support multiple bitstreams for concurrent decoding, and for its minimization propose a method for compressing parallel-decoding entry points, using bidirectional bitstream packing, and a new form of jointly optimizing arithmetic coding termination. It is shown that those techniques significantly lower the overhead, making it easier to reduce it to a small fraction of the average bitstream size, like, for example, less than 1% and 0.1% when the average number of bitstream bytes is respectively larger than 95 and 1,200 bytes.
Abstract:We propose a new class of kernels to simplify the design of filters for image interpolation and resizing. Their properties are defined according to two parameters, specifying the width of the transition band and the height of a unique sidelobe. By varying these parameters it is possible to efficiently explore the space with only the filters that are suitable for image interpolation and resizing, and identify the filter that is best for a given application. These two parameters are also sufficient to obtain very good approximations of many commonly-used interpolation kernels. We also show that, because the Fourier transforms of these kernels have very fast decay, these filters produce better results when time-stretched for image downsizing.
Abstract:Neural video codecs have recently become competitive with standard codecs such as HEVC in the low-delay setting. However, most neural codecs are large floating-point networks that use pixel-dense warping operations for temporal modeling, making them too computationally expensive for deployment on mobile devices. Recent work has demonstrated that running a neural decoder in real time on mobile is feasible, but shows this only for 720p RGB video, while the YUV420 format is more commonly used in production. This work presents the first neural video codec that decodes 1080p YUV420 video in real time on a mobile device. Our codec relies on two major contributions. First, we design an efficient codec that uses a block-based motion compensation algorithm available on the warping core of the mobile accelerator, and we show how to quantize this model to integer precision. Second, we implement a fast decoder pipeline that concurrently runs neural network components on the neural signal processor, parallel entropy coding on the mobile GPU, and warping on the warping core. Our codec outperforms the previous on-device codec by a large margin with up to 48 % BD-rate savings, while reducing the MAC count on the receiver side by 10x. We perform a careful ablation to demonstrate the effect of the introduced motion compensation scheme, and ablate the effect of model quantization.
Abstract:Neural networks (NN) can improve standard video compression by pre- and post-processing the encoded video. For optimal NN training, the standard codec needs to be replaced with a codec proxy that can provide derivatives of estimated bit-rate and distortion, which are used for gradient back-propagation. Since entropy coding of standard codecs is designed to take into account non-linear dependencies between transform coefficients, bit-rates cannot be well approximated with simple per-coefficient estimators. This paper presents a new approach for bit-rate estimation that is similar to the type employed in training end-to-end neural codecs, and able to efficiently take into account those statistical dependencies. It is defined from a mathematical model that provides closed-form formulas for the estimates and their gradients, reducing the computational complexity. Experimental results demonstrate the method's accuracy in estimating HEVC/H.265 codec bit-rates.
Abstract:Neural-based image and video codecs are significantly more power-efficient when weights and activations are quantized to low-precision integers. While there are general-purpose techniques for reducing quantization effects, large losses can occur when specific entropy coding properties are not considered. This work analyzes how entropy coding is affected by parameter quantizations, and provides a method to minimize losses. It is shown that, by using a certain type of coding parameters to be learned, uniform quantization becomes practically optimal, also simplifying the minimization of code memory requirements. The mathematical properties of the new representation are presented, and its effectiveness is demonstrated by coding experiments, showing that good results can be obtained with precision as low as 4~bits per network output, and practically no loss with 8~bits.
Abstract:In video compression, coding efficiency is improved by reusing pixels from previously decoded frames via motion and residual compensation. We define two levels of hierarchical redundancy in video frames: 1) first-order: redundancy in pixel space, i.e., similarities in pixel values across neighboring frames, which is effectively captured using motion and residual compensation, 2) second-order: redundancy in motion and residual maps due to smooth motion in natural videos. While most of the existing neural video coding literature addresses first-order redundancy, we tackle the problem of capturing second-order redundancy in neural video codecs via predictors. We introduce generic motion and residual predictors that learn to extrapolate from previously decoded data. These predictors are lightweight, and can be employed with most neural video codecs in order to improve their rate-distortion performance. Moreover, while RGB is the dominant colorspace in neural video coding literature, we introduce general modifications for neural video codecs to embrace the YUV420 colorspace and report YUV420 results. Our experiments show that using our predictors with a well-known neural video codec leads to 38% and 34% bitrate savings in RGB and YUV420 colorspaces measured on the UVG dataset.
Abstract:Realizing the potential of neural video codecs on mobile devices is a big technological challenge due to the computational complexity of deep networks and the power-constrained mobile hardware. We demonstrate practical feasibility by leveraging Qualcomm's technology and innovation, bridging the gap from neural network-based codec simulations running on wall-powered workstations, to real-time operation on a mobile device powered by Snapdragon technology. We show the first-ever inter-frame neural video decoder running on a commercial mobile phone, decoding high-definition videos in real-time while maintaining a low bitrate and high visual quality.
Abstract:Most of the existing deep learning based end-to-end image/video coding (DLEC) architectures are designed for non-subsampled RGB color format. However, in order to achieve a superior coding performance, many state-of-the-art block-based compression standards such as High Efficiency Video Coding (HEVC/H.265) and Versatile Video Coding (VVC/H.266) are designed primarily for YUV 4:2:0 format, where U and V components are subsampled by considering the human visual system. This paper investigates various DLEC designs to support YUV 4:2:0 format by comparing their performance against the main profiles of HEVC and VVC standards under a common evaluation framework. Moreover, a new transform network architecture is proposed to improve the efficiency of coding YUV 4:2:0 data. The experimental results on YUV 4:2:0 datasets show that the proposed architecture significantly outperforms naive extensions of existing architectures designed for RGB format and achieves about 10% average BD-rate improvement over the intra-frame coding in HEVC.