Abstract:Neural video codecs have recently become competitive with standard codecs such as HEVC in the low-delay setting. However, most neural codecs are large floating-point networks that use pixel-dense warping operations for temporal modeling, making them too computationally expensive for deployment on mobile devices. Recent work has demonstrated that running a neural decoder in real time on mobile is feasible, but shows this only for 720p RGB video, while the YUV420 format is more commonly used in production. This work presents the first neural video codec that decodes 1080p YUV420 video in real time on a mobile device. Our codec relies on two major contributions. First, we design an efficient codec that uses a block-based motion compensation algorithm available on the warping core of the mobile accelerator, and we show how to quantize this model to integer precision. Second, we implement a fast decoder pipeline that concurrently runs neural network components on the neural signal processor, parallel entropy coding on the mobile GPU, and warping on the warping core. Our codec outperforms the previous on-device codec by a large margin with up to 48 % BD-rate savings, while reducing the MAC count on the receiver side by 10x. We perform a careful ablation to demonstrate the effect of the introduced motion compensation scheme, and ablate the effect of model quantization.
Abstract:Graph neural networks have triggered a resurgence of graph-based text classification methods, defining today's state of the art. We show that a simple multi-layer perceptron (MLP) using a Bag of Words (BoW) outperforms the recent graph-based models TextGCN and HeteGCN in an inductive text classification setting and is comparable with HyperGAT in single-label classification. We also run our own experiments on multi-label classification, where the simple MLP outperforms the recent sequential-based gMLP and aMLP models. Moreover, we fine-tune a sequence-based BERT and a lightweight DistilBERT model, which both outperform all models on both single-label and multi-label settings in most datasets. These results question the importance of synthetic graphs used in modern text classifiers. In terms of parameters, DistilBERT is still twice as large as our BoW-based wide MLP, while graph-based models like TextGCN require setting up an $\mathcal{O}(N^2)$ graph, where $N$ is the vocabulary plus corpus size.