Abstract:Language models can serve as a valuable tool for software developers to increase productivity. Large generative models can be used for code generation and code completion, while smaller encoder-only models are capable of performing code search tasks using natural language queries.These capabilities are heavily influenced by the quality and diversity of the available training data. Source code datasets used for training usually focus on the most popular languages and testing is mostly conducted on the same distributions, often overlooking low-resource programming languages. Motivated by the NLP generalization taxonomy proposed by Hupkes et.\,al., we propose a new benchmark dataset called GenCodeSearchNet (GeCS) which builds upon existing natural language code search datasets to systemically evaluate the programming language understanding generalization capabilities of language models. As part of the full dataset, we introduce a new, manually curated subset StatCodeSearch that focuses on R, a popular but so far underrepresented programming language that is often used by researchers outside the field of computer science. For evaluation and comparison, we collect several baseline results using fine-tuned BERT-style models and GPT-style large language models in a zero-shot setting.
Abstract:Privacy preserving deep learning is an emerging field in machine learning that aims to mitigate the privacy risks in the use of deep neural networks. One such risk is training data extraction from language models that have been trained on datasets , which contain personal and privacy sensitive information. In our study, we investigate the extent of named entity memorization in fine-tuned BERT models. We use single-label text classification as representative downstream task and employ three different fine-tuning setups in our experiments, including one with Differentially Privacy (DP). We create a large number of text samples from the fine-tuned BERT models utilizing a custom sequential sampling strategy with two prompting strategies. We search in these samples for named entities and check if they are also present in the fine-tuning datasets. We experiment with two benchmark datasets in the domains of emails and blogs. We show that the application of DP has a huge effect on the text generation capabilities of BERT. Furthermore, we show that a fine-tuned BERT does not generate more named entities entities specific to the fine-tuning dataset than a BERT model that is pre-trained only. This suggests that BERT is unlikely to emit personal or privacy sensitive named entities. Overall, our results are important to understand to what extent BERT-based services are prone to training data extraction attacks.
Abstract:Graph neural networks have triggered a resurgence of graph-based text classification methods, defining today's state of the art. We show that a simple multi-layer perceptron (MLP) using a Bag of Words (BoW) outperforms the recent graph-based models TextGCN and HeteGCN in an inductive text classification setting and is comparable with HyperGAT in single-label classification. We also run our own experiments on multi-label classification, where the simple MLP outperforms the recent sequential-based gMLP and aMLP models. Moreover, we fine-tune a sequence-based BERT and a lightweight DistilBERT model, which both outperform all models on both single-label and multi-label settings in most datasets. These results question the importance of synthetic graphs used in modern text classifiers. In terms of parameters, DistilBERT is still twice as large as our BoW-based wide MLP, while graph-based models like TextGCN require setting up an $\mathcal{O}(N^2)$ graph, where $N$ is the vocabulary plus corpus size.