Abstract:Message Passing Neural Networks (MPNNs) have demonstrated remarkable success in node classification on homophilic graphs. It has been shown that they do not solely rely on homophily but on neighborhood distributions of nodes, i.e., consistency of the neighborhood label distribution within the same class. MLP-based models do not use message passing, \eg Graph-MLP incorporates the neighborhood in a separate loss function. These models are faster and more robust to edge noise. Graph-MLP maps adjacent nodes closer in the embedding space but is unaware of the neighborhood pattern of the labels, i.e., relies solely on homophily. Edge Splitting GNN (ES-GNN) is a model specialized for heterophilic graphs and splits the edges into task-relevant and task-irrelevant, respectively. To mitigate the limitations of Graph-MLP on heterophilic graphs, we propose ES-MLP that combines Graph-MLP with an edge-splitting mechanism from ES-GNN. It incorporates the edge splitting into the loss of Graph-MLP to learn two separate adjacency matrices based on relevant and irrelevant feature pairs. Our experiments on seven datasets with six baselines show that ES-MLP is on par with homophilic and heterophilic models on all datasets without using edges during inference. We show that ES-MLP is robust to multiple types of edge noise during inference and that its inference time is two to five times faster than that of commonly used MPNNs. The source code is available at https://github.com/MatthiasKohn/ES-MLP.
Abstract:Continual learning remains challenging across various natural language understanding tasks. When models are updated with new training data, they risk catastrophic forgetting of prior knowledge. In the present work, we introduce a discrete key-value bottleneck for encoder-only language models, allowing for efficient continual learning by requiring only localized updates. Inspired by the success of a discrete key-value bottleneck in vision, we address new and NLP-specific challenges. We experiment with different bottleneck architectures to find the most suitable variants regarding language, and present a generic discrete key initialization technique for NLP that is task independent. We evaluate the discrete key-value bottleneck in four continual learning NLP scenarios and demonstrate that it alleviates catastrophic forgetting. We showcase that it offers competitive performance to other popular continual learning methods, with lower computational costs.
Abstract:Assessing the importance of individual training samples is a key challenge in machine learning. Traditional approaches retrain models with and without specific samples, which is computationally expensive and ignores dependencies between data points. We introduce LossVal, an efficient data valuation method that computes importance scores during neural network training by embedding a self-weighting mechanism into loss functions like cross-entropy and mean squared error. LossVal reduces computational costs, making it suitable for large datasets and practical applications. Experiments on classification and regression tasks across multiple datasets show that LossVal effectively identifies noisy samples and is able to distinguish helpful from harmful samples. We examine the gradient calculation of LossVal to highlight its advantages. The source code is available at: https://github.com/twibiral/LossVal
Abstract:Low isotropy in an embedding space impairs performance on tasks involving semantic inference. Our study investigates the impact of isotropy on semantic code search performance and explores post-processing techniques to mitigate this issue. We analyze various code language models, examine isotropy in their embedding spaces, and its influence on search effectiveness. We propose a modified ZCA whitening technique to control isotropy levels in embeddings. Our results demonstrate that Soft-ZCA whitening improves the performance of pre-trained code language models and can complement contrastive fine-tuning. The code for our experiments is available at https://github.com/drndr/code\_isotropy
Abstract:The lack of a formal model of events hinders interoperability in distributed event-based systems. In this paper, we present a formal model of events, called Event-Model-F. The model is based on the foundational ontology DOLCE+DnS Ultralite (DUL) and provides comprehensive support to represent time and space, objects and persons, as well as mereological, causal, and correlative relationships between events. In addition, the Event-Model-F provides a flexible means for event composition, modeling event causality and event correlation, and representing different interpretations of the same event. The Event-Model-F is developed following the pattern-oriented approach of DUL, is modularized in different ontologies, and can be easily extended by domain specific ontologies.
Abstract:Assigning a subset of labels from a fixed pool of labels to a given input text is a text classification problem with many real-world applications, such as in recommender systems. Two separate research streams address this issue. Hierarchical Text Classification (HTC) focuses on datasets with smaller label pools of hundreds of entries, accompanied by a semantic label hierarchy. In contrast, eXtreme Multi-Label Text Classification (XML) considers very large label pools with up to millions of entries, in which the labels are not arranged in any particular manner. However, in XML, a common approach is to construct an artificial hierarchy without any semantic information before or during the training process. Here, we investigate how state-of-the-art models from one domain perform when trained and tested on datasets from the other domain. The HBGL and HGLCR models from the HTC domain are trained and tested on the datasets Wiki10-31K, AmazonCat-13K, and Amazon-670K from the XML domain. On the other side, the XML models CascadeXML and XR-Transformer are trained and tested on the datasets Web of Science, The New York Times Annotated Corpus, and RCV1-V2 from the HTC domain. HTC models, on the other hand, are not equipped to handle the size of XML datasets and achieve poor transfer results. The code and numerous files that are needed to reproduce our results can be obtained from https://github.com/FloHauss/XMC_HTC
Abstract:Summarizing web graphs is challenging due to the heterogeneity of the modeled information and its changes over time. We investigate the use of neural networks for lifelong graph summarization. Assuming we observe the web graph at a certain time, we train the networks to summarize graph vertices. We apply this trained network to summarize the vertices of the changed graph at the next point in time. Subsequently, we continue training and evaluating the network to perform lifelong graph summarization. We use the GNNs Graph-MLP and GraphSAINT, as well as an MLP baseline, to summarize the temporal graphs. We compare $1$-hop and $2$-hop summaries. We investigate the impact of reusing parameters from a previous snapshot by measuring the backward and forward transfer and the forgetting rate of the neural networks. Our extensive experiments on ten weekly snapshots of a web graph with over $100$M edges, sampled in 2012 and 2022, show that all networks predominantly use $1$-hop information to determine the summary, even when performing $2$-hop summarization. Due to the heterogeneity of web graphs, in some snapshots, the $2$-hop summary produces over ten times more vertex summaries than the $1$-hop summary. When using the network trained on the last snapshot from 2012 and applying it to the first snapshot of 2022, we observe a strong drop in accuracy. We attribute this drop over the ten-year time warp to the strongly increased heterogeneity of the web graph in 2022.
Abstract:HyperAggregation is a hypernetwork-based aggregation function for Graph Neural Networks. It uses a hypernetwork to dynamically generate weights in the size of the current neighborhood, which are then used to aggregate this neighborhood. This aggregation with the generated weights is done like an MLP-Mixer channel mixing over variable-sized vertex neighborhoods. We demonstrate HyperAggregation in two models, GraphHyperMixer is a model based on MLP-Mixer while GraphHyperConv is derived from a GCN but with a hypernetwork-based aggregation function. We perform experiments on diverse benchmark datasets for the vertex classification, graph classification, and graph regression tasks. The results show that HyperAggregation can be effectively used for homophilic and heterophilic datasets in both inductive and transductive settings. GraphHyperConv performs better than GraphHyperMixer and is especially strong in the transductive setting. On the heterophilic dataset Roman-Empire it reaches a new state of the art. On the graph-level tasks our models perform in line with similarly sized models. Ablation studies investigate the robustness against various hyperparameter choices. The implementation of HyperAggregation as well code to reproduce all experiments is available under https://github.com/Foisunt/HyperAggregation .
Abstract:We consider the problem of \textit{true} open-world semi-supervised node classification, in which nodes in a graph either belong to known or new classes, with the latter not present during training. Existing methods detect and reject new classes but fail to distinguish between different new classes. We adapt existing methods and show they do not solve the problem sufficiently. We introduce a novel end-to-end approach for classification into known classes and new classes based on class prototypes, which we call Prototypical Open-World Learning for Node Classification (POWN). Our method combines graph semi-supervised learning, self-supervised learning, and pseudo-labeling to learn prototype representations of new classes in a zero-shot way. In contrast to existing solutions from the vision domain, POWN does not require data augmentation techniques for node classification. Experiments on benchmark datasets demonstrate the effectiveness of POWN, where it outperforms baselines by up to $20\%$ accuracy on the small and up to $30\%$ on the large datasets. Source code is available at https://github.com/Bobowner/POWN.
Abstract:Text role classification involves classifying the semantic role of textual elements within scientific charts. For this task, we propose to finetune two pretrained multimodal document layout analysis models, LayoutLMv3 and UDOP, on chart datasets. The transformers utilize the three modalities of text, image, and layout as input. We further investigate whether data augmentation and balancing methods help the performance of the models. The models are evaluated on various chart datasets, and results show that LayoutLMv3 outperforms UDOP in all experiments. LayoutLMv3 achieves the highest F1-macro score of 82.87 on the ICPR22 test dataset, beating the best-performing model from the ICPR22 CHART-Infographics challenge. Moreover, the robustness of the models is tested on a synthetic noisy dataset ICPR22-N. Finally, the generalizability of the models is evaluated on three chart datasets, CHIME-R, DeGruyter, and EconBiz, for which we added labels for the text roles. Findings indicate that even in cases where there is limited training data, transformers can be used with the help of data augmentation and balancing methods. The source code and datasets are available on GitHub under https://github.com/hjkimk/text-role-classification