Abstract:Human bimanual manipulation can perform more complex tasks than a simple combination of two single arms, which is credited to the spatio-temporal coordination between the arms. However, the description of bimanual coordination is still an open topic in robotics. This makes it difficult to give an explainable coordination paradigm, let alone applied to robotics. In this work, we divide the main bimanual tasks in human daily activities into two types: leader-follower and synergistic coordination. Then we propose a relative parameterization method to learn these types of coordination from human demonstration. It represents coordination as Gaussian mixture models from bimanual demonstration to describe the change in the importance of coordination throughout the motions by probability. The learned coordinated representation can be generalized to new task parameters while ensuring spatio-temporal coordination. We demonstrate the method using synthetic motions and human demonstration data and deploy it to a humanoid robot to perform a generalized bimanual coordination motion. We believe that this easy-to-use bimanual learning from demonstration (LfD) method has the potential to be used as a data augmentation plugin for robot large manipulation model training. The corresponding codes are open-sourced in https://github.com/Skylark0924/Rofunc.
Abstract:Soft object manipulation tasks in domestic scenes pose a significant challenge for existing robotic skill learning techniques due to their complex dynamics and variable shape characteristics. Since learning new manipulation skills from human demonstration is an effective way for robot applications, developing prior knowledge of the representation and dynamics of soft objects is necessary. In this regard, we propose a pre-trained soft object manipulation skill learning model, namely SoftGPT, that is trained using large amounts of exploration data, consisting of a three-dimensional heterogeneous graph representation and a GPT-based dynamics model. For each downstream task, a goal-oriented policy agent is trained to predict the subsequent actions, and SoftGPT generates the consequences of these actions. Integrating these two approaches establishes a thinking process in the robot's mind that provides rollout for facilitating policy learning. Our results demonstrate that leveraging prior knowledge through this thinking process can efficiently learn various soft object manipulation skills, with the potential for direct learning from human demonstrations.
Abstract:Embodied AI is an inevitable trend that emphasizes the interaction between intelligent entities and the real world, with broad applications in Robotics, especially target-driven navigation. This task requires the robot to find an object of a certain category efficiently in an unknown domestic environment. Recent works focus on exploiting layout relationships by graph neural networks (GNNs). However, most of them obtain robot actions directly from observations in an end-to-end manner via an incomplete relation graph, which is not interpretable and reliable. We decouple this task and propose ReVoLT, a hierarchical framework: (a) an object detection visual front-end, (b) a high-level reasoner (infers semantic sub-goals), (c) an intermediate-level planner (computes geometrical positions), and (d) a low-level controller (executes actions). ReVoLT operates with a multi-layer semantic-spatial topological graph. The reasoner uses multiform structured relations as priors, which are obtained from combinatorial relation extraction networks composed of unsupervised GraphSAGE, GCN, and GraphRNN-based Region Rollout. The reasoner performs with Upper Confidence Bound for Tree (UCT) to infer semantic sub-goals, accounting for trade-offs between exploitation (depth-first searching) and exploration (regretting). The lightweight intermediate-level planner generates instantaneous spatial sub-goal locations via an online constructed Voronoi local graph. The simulation experiments demonstrate that our framework achieves better performance in the target-driven navigation tasks and generalizes well, which has an 80% improvement compared to the existing state-of-the-art method. The code and result video will be released at https://ventusff.github.io/ReVoLT-website/.
Abstract:Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.
Abstract:This letter describes an approach to achieve well-known Chinese cooking art stir-fry on a bimanual robot system. Stir-fry requires a sequence of highly dynamic coordinated movements, which is usually difficult to learn for a chef, let alone transfer to robots. In this letter, we define a canonical stir-fry movement, and then propose a decoupled framework for learning this deformable object manipulation from human demonstration. First, the dual arms of the robot are decoupled into different roles (a leader and follower) and learned with classical and neural network-based methods separately, then the bimanual task is transformed into a coordination problem. To obtain general bimanual coordination, we secondly propose a Graph and Transformer based model -- Structured-Transformer, to capture the spatio-temporal relationship between dual-arm movements. Finally, by adding visual feedback of content deformation, our framework can adjust the movements automatically to achieve the desired stir-fry effect. We verify the framework by a simulator and deploy it on a real bimanual Panda robot system. The experimental results validate our framework can realize the bimanual robot stir-fry motion and have the potential to extend to other deformable objects with bimanual coordination.
Abstract:Precise trajectory prediction of surrounding vehicles is critical for decision-making of autonomous vehicles and learning-based approaches are well recognized for the robustness. However, state-of-the-art learning-based methods ignore 1) the feasibility of the vehicle's multi-modal state information for prediction and 2) the mutual exclusive relationship between the global traffic scene receptive fields and the local position resolution when modeling vehicles' interactions, which may influence prediction accuracy. Therefore, we propose a vehicle-descriptor based LSTM model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues. First, each vehicle's multi-modal state information is employed as our model's input and a new vehicle descriptor encoded by stacked sparse auto-encoders is proposed to reflect the deep interactive relationships between various states, achieving the optimal feature extraction and effective use of multi-modal inputs. Secondly, the LSTM encoder is used to encode the historical sequences composed of the vehicle descriptor and a novel dilated convolutional social pooling is proposed to improve modeling vehicles' spatial interactions. Thirdly, the LSTM decoder is used to predict the probability distribution of future trajectories based on maneuvers. The validity of the overall model was verified over the NGSIM US-101 and I-80 datasets and our method outperforms the latest benchmark.
Abstract:The intelligent control of traffic signal is critical to the optimization of transportation systems. To solve the problem in large-scale road networks, recent research has focused on interactions among intersections, which have shown promising results. However, existing studies pay more attention to the sensation sharing among agents and do not care about the results after taking each action. In this paper, we propose a novel multi-agent interaction mechanism, defined as Gamma-Reward that includes both original Gamma-Reward and Gamma-Attention-Reward, which use the space-time information in the replay buffer to amend the reward of each action, for traffic signal control based on deep reinforcement learning method. We give a detailed theoretical foundation and prove the proposed method can converge to Nash Equilibrium. By extending the idea of Markov Chain to the road network, this interaction mechanism replaces the graph attention method and realizes the decoupling of the road network, which is more in line with practical applications. Simulation and experiment results demonstrate that the proposed model can get better performance than previous studies, by amending the reward. To our best knowledge, our work appears to be the first to treat the road network itself as a Markov Chain.
Abstract:Compared to rigid robots that are often studied in reinforcement learning, the physical characteristics of some sophisticated robots such as software or continuum are more complicated. Moreover, recent reinforcement learning methods are data-inefficient and can not be directly deployed to the robot without simulation. In this paper, we propose an efficient reinforcement learning method based on inexplicit prior knowledge in response to such problems. The method is firstly corroborated by simulation and employed directly in the real world. By using our method, we can achieve visual active tracking and distance maintenance of a tendon-driven robot which will be critical in minimally-invasive procedures.