Abstract:General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
Abstract:Recent research shows that modern deep learning models achieve high predictive accuracy partly by memorizing individual training samples. Such memorization raises serious privacy concerns, motivating the widespread adoption of differentially private training algorithms such as DP-SGD. However, a growing body of empirical work shows that DP-SGD often leads to suboptimal generalization performance, particularly on long-tailed data that contain a large number of rare or atypical samples. Despite these observations, a theoretical understanding of this phenomenon remains largely unexplored, and existing differential privacy analysis are difficult to extend to the nonconvex and nonsmooth neural networks commonly used in practice. In this work, we develop the first theoretical framework for analyzing DP-SGD on long-tailed data from a feature learning perspective. We show that the test error of DP-SGD-trained models on the long-tailed subpopulation is significantly larger than the overall test error over the entire dataset. Our analysis further characterizes the training dynamics of DP-SGD, demonstrating how gradient clipping and noise injection jointly adversely affect the model's ability to memorize informative but underrepresented samples. Finally, we validate our theoretical findings through extensive experiments on both synthetic and real-world datasets.
Abstract:Exploratory GUI testing is essential for software quality but suffers from high manual costs. While Multi-modal Large Language Model (MLLM) agents excel in navigation, they fail to autonomously discover defects due to two core challenges: \textit{Goal-Oriented Masking}, where agents prioritize task completion over reporting anomalies, and \textit{Execution-Bias Attribution}, where system defects are misidentified as agent errors. To address these, we first introduce \textbf{GUITestBench}, the first interactive benchmark for this task, featuring 143 tasks across 26 defects. We then propose \textbf{GUITester}, a multi-agent framework that decouples navigation from verification via two modules: (i) a \textit{Planning-Execution Module (PEM)} that proactively probes for defects via embedded testing intents, and (ii) a \textit{Hierarchical Reflection Module (HRM)} that resolves attribution ambiguity through interaction history analysis. GUITester achieves an F1-score of 48.90\% (Pass@3) on GUITestBench, outperforming state-of-the-art baselines (33.35\%). Our work demonstrates the feasibility of autonomous exploratory testing and provides a robust foundation for future GUI quality assurance~\footnote{Our code is now available in~\href{https://github.com/ADaM-BJTU/GUITestBench}{https://github.com/ADaM-BJTU/GUITestBench}}.
Abstract:Autonomous driving requires a persistent understanding of 3D scenes that is robust to temporal disturbances and accounts for potential future actions. We introduce a new concept of 4D Occupancy Spatio-Temporal Persistence (OccSTeP), which aims to address two tasks: (1) reactive forecasting: ''what will happen next'' and (2) proactive forecasting: "what would happen given a specific future action". For the first time, we create a new OccSTeP benchmark with challenging scenarios (e.g., erroneous semantic labels and dropped frames). To address this task, we propose OccSTeP-WM, a tokenizer-free world model that maintains a dense voxel-based scene state and incrementally fuses spatio-temporal context over time. OccSTeP-WM leverages a linear-complexity attention backbone and a recurrent state-space module to capture long-range spatial dependencies while continually updating the scene memory with ego-motion compensation. This design enables online inference and robust performance even when historical sensor input is missing or noisy. Extensive experiments prove the effectiveness of the OccSTeP concept and our OccSTeP-WM, yielding an average semantic mIoU of 23.70% (+6.56% gain) and occupancy IoU of 35.89% (+9.26% gain). The data and code will be open source at https://github.com/FaterYU/OccSTeP.
Abstract:Reliable interpretation of multimodal data in dentistry is essential for automated oral healthcare, yet current multimodal large language models (MLLMs) struggle to capture fine-grained dental visual details and lack sufficient reasoning ability for precise diagnosis. To address these limitations, we present DentalGPT, a specialized dental MLLM developed through high-quality domain knowledge injection and reinforcement learning. Specifically, the largest annotated multimodal dataset for dentistry to date was constructed by aggregating over 120k dental images paired with detailed descriptions that highlight diagnostically relevant visual features, making it the multimodal dataset with the most extensive collection of dental images to date. Training on this dataset significantly enhances the MLLM's visual understanding of dental conditions, while the subsequent reinforcement learning stage further strengthens its capability for multimodal complex reasoning. Comprehensive evaluations on intraoral and panoramic benchmarks, along with dental subsets of medical VQA benchmarks, show that DentalGPT achieves superior performance in disease classification and dental VQA tasks, outperforming many state-of-the-art MLLMs despite having only 7B parameters. These results demonstrate that high-quality dental data combined with staged adaptation provides an effective pathway for building capable and domain-specialized dental MLLMs.




Abstract:Multi-modal large reasoning models (MLRMs) pose significant privacy risks by inferring precise geographic locations from personal images through hierarchical chain-of-thought reasoning. Existing privacy protection techniques, primarily designed for perception-based models, prove ineffective against MLRMs' sophisticated multi-step reasoning processes that analyze environmental cues. We introduce \textbf{ReasonBreak}, a novel adversarial framework specifically designed to disrupt hierarchical reasoning in MLRMs through concept-aware perturbations. Our approach is founded on the key insight that effective disruption of geographic reasoning requires perturbations aligned with conceptual hierarchies rather than uniform noise. ReasonBreak strategically targets critical conceptual dependencies within reasoning chains, generating perturbations that invalidate specific inference steps and cascade through subsequent reasoning stages. To facilitate this approach, we contribute \textbf{GeoPrivacy-6K}, a comprehensive dataset comprising 6,341 ultra-high-resolution images ($\geq$2K) with hierarchical concept annotations. Extensive evaluation across seven state-of-the-art MLRMs (including GPT-o3, GPT-5, Gemini 2.5 Pro) demonstrates ReasonBreak's superior effectiveness, achieving a 14.4\% improvement in tract-level protection (33.8\% vs 19.4\%) and nearly doubling block-level protection (33.5\% vs 16.8\%). This work establishes a new paradigm for privacy protection against reasoning-based threats.
Abstract:This letter presents a feature-guided adversarial framework, namely ComGAN, which is designed to reconstruct an incomplete fingerprint database by inferring missing received signal strength (RSS) values at unmeasured reference points (RPs). An auxiliary subnetwork is integrated into a conditional generative adversarial network (cGAN) to enable spatial feature learning. An optimization method is then developed to refine the RSS predictions by aggregating multiple prediction sets, achieving an improved localization performance. Experimental results demonstrate that the proposed scheme achieves a root mean squared error (RMSE) comparable to the ground-truth measurements while outperforming state-of-the-art reconstruction methods. When the reconstructed fingerprint is combined with measured data for training, the fingerprinting localization achieves accuracy comparable to models trained on fully measured datasets.
Abstract:Safe reinforcement learning (safe RL) aims to respect safety requirements while optimizing long-term performance. In many practical applications, however, the problem involves an infinite number of constraints, known as semi-infinite safe RL (SI-safe RL). Such constraints typically appear when safety conditions must be enforced across an entire continuous parameter space, such as ensuring adequate resource distribution at every spatial location. In this paper, we propose exchange policy optimization (EPO), an algorithmic framework that achieves optimal policy performance and deterministic bounded safety. EPO works by iteratively solving safe RL subproblems with finite constraint sets and adaptively adjusting the active set through constraint expansion and deletion. At each iteration, constraints with violations exceeding the predefined tolerance are added to refine the policy, while those with zero Lagrange multipliers are removed after the policy update. This exchange rule prevents uncontrolled growth of the working set and supports effective policy training. Our theoretical analysis demonstrates that, under mild assumptions, strategies trained via EPO achieve performance comparable to optimal solutions with global constraint violations strictly remaining within a prescribed bound.
Abstract:Video tracking aims at finding the specific target in subsequent frames given its initial state. Due to the varying granularity of target states across different tasks, most existing trackers are tailored to a single task and heavily rely on custom-designed modules within the individual task, which limits their generalization and leads to redundancy in both model design and parameters. To unify video tracking tasks, we present SAM 2++, a unified model towards tracking at any granularity, including masks, boxes, and points. First, to extend target granularity, we design task-specific prompts to encode various task inputs into general prompt embeddings, and a unified decoder to unify diverse task results into a unified form pre-output. Next, to satisfy memory matching, the core operation of tracking, we introduce a task-adaptive memory mechanism that unifies memory across different granularities. Finally, we introduce a customized data engine to support tracking training at any granularity, producing a large and diverse video tracking dataset with rich annotations at three granularities, termed Tracking-Any-Granularity, which represents a comprehensive resource for training and benchmarking on unified tracking. Comprehensive experiments on multiple benchmarks confirm that SAM 2++ sets a new state of the art across diverse tracking tasks at different granularities, establishing a unified and robust tracking framework.




Abstract:Quantifying the influence of individual training samples is essential for enhancing the transparency and accountability of large language models (LLMs) and vision-language models (VLMs). However, existing data valuation methods often rely on Hessian information or model retraining, making them computationally prohibitive for billion-parameter models. In this work, we introduce For-Value, a forward-only data valuation framework that enables scalable and efficient influence estimation for both LLMs and VLMs. By leveraging the rich representations of modern foundation models, For-Value computes influence scores using a simple closed-form expression based solely on a single forward pass, thereby eliminating the need for costly gradient computations. Our theoretical analysis demonstrates that For-Value accurately estimates per-sample influence by capturing alignment in hidden representations and prediction errors between training and validation samples. Extensive experiments show that For-Value matches or outperforms gradient-based baselines in identifying impactful fine-tuning examples and effectively detecting mislabeled data.