Abstract:Backdoor attacks covertly implant triggers into deep neural networks (DNNs) by poisoning a small portion of the training data with pre-designed backdoor triggers. This vulnerability is exacerbated in the era of large models, where extensive (pre-)training on web-crawled datasets is susceptible to compromise. In this paper, we introduce a novel two-step defense framework named Expose Before You Defend (EBYD). EBYD unifies existing backdoor defense methods into a comprehensive defense system with enhanced performance. Specifically, EBYD first exposes the backdoor functionality in the backdoored model through a model preprocessing step called backdoor exposure, and then applies detection and removal methods to the exposed model to identify and eliminate the backdoor features. In the first step of backdoor exposure, we propose a novel technique called Clean Unlearning (CUL), which proactively unlearns clean features from the backdoored model to reveal the hidden backdoor features. We also explore various model editing/modification techniques for backdoor exposure, including fine-tuning, model sparsification, and weight perturbation. Using EBYD, we conduct extensive experiments on 10 image attacks and 6 text attacks across 2 vision datasets (CIFAR-10 and an ImageNet subset) and 4 language datasets (SST-2, IMDB, Twitter, and AG's News). The results demonstrate the importance of backdoor exposure for backdoor defense, showing that the exposed models can significantly benefit a range of downstream defense tasks, including backdoor label detection, backdoor trigger recovery, backdoor model detection, and backdoor removal. We hope our work could inspire more research in developing advanced defense frameworks with exposed models. Our code is available at: https://github.com/bboylyg/Expose-Before-You-Defend.
Abstract:Transcranial magnetic stimulation (TMS) is a noninvasive medical procedure that can modulate brain activity, and it is widely used in neuroscience and neurology research. Compared to manual operators, robots may improve the outcome of TMS due to their superior accuracy and repeatability. However, there has not been a widely accepted standard protocol for performing robotic TMS using fine-segmented brain images, resulting in arbitrary planned angles with respect to the true boundaries of the modulated cortex. Given that the recent study in TMS simulation suggests a noticeable difference in outcomes when using different anatomical details, cortical shape should play a more significant role in deciding the optimal TMS coil pose. In this work, we introduce an image-guided robotic system for TMS that focuses on (1) establishing standardized planning methods and heuristics to define a reference (true zero) for the coil poses and (2) solving the issue that the manual coil placement requires expert hand-eye coordination which often leading to low repeatability of the experiments. To validate the design of our robotic system, a phantom study and a preliminary human subject study were performed. Our results show that the robotic method can half the positional error and improve the rotational accuracy by up to two orders of magnitude. The accuracy is proven to be repeatable because the standard deviation of multiple trials is lowered by an order of magnitude. The improved actuation accuracy successfully translates to the TMS application, with a higher and more stable induced voltage in magnetic field sensors.
Abstract:Pre-trained vision-language models (VLMs), such as CLIP, have exhibited remarkable performance across various downstream tasks by aligning text and images in a unified embedding space. However, due to the imbalanced distribution of pre-trained datasets, CLIP suffers from the bias problem in real-world applications. Existing debiasing methods struggle to obtain sufficient image samples for minority groups and incur high costs for group labeling. To address the limitations, we propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases. Specifically, this approach repurposes the text encoder to function as an image encoder, thereby eliminating the need for image data. Simultaneously, it utilizes a large language model (LLM) to generate a balanced text dataset, which is then used for prompt tuning. However, we observed that the model overfits to the text modality because label names, serving as supervision signals, appear explicitly in the texts. To address this issue, we further introduce a Multi-Target Prediction (MTP) task that motivates the model to focus on complex contexts and distinguish between target and biased information. Extensive experiments on the Waterbirds and CelebA datasets show that our method significantly improves group robustness, achieving state-of-the-art results among image-free methods and even competitive performance compared to image-supervised methods. Furthermore, the proposed method can be adapted to challenging scenarios with multiple or unknown bias attributes, demonstrating its strong generalization and robustness.
Abstract:Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks, particularly targeted adversarial images that manipulate the model to generate harmful content specified by the adversary. Current attack methods rely on predefined target labels to create targeted adversarial attacks, which limits their scalability and applicability for large-scale robustness evaluations. In this paper, we propose AnyAttack, a self-supervised framework that generates targeted adversarial images for VLMs without label supervision, allowing any image to serve as a target for the attack. To address the limitation of existing methods that require label supervision, we introduce a contrastive loss that trains a generator on a large-scale unlabeled image dataset, LAION-400M dataset, for generating targeted adversarial noise. This large-scale pre-training endows our method with powerful transferability across a wide range of VLMs. Extensive experiments on five mainstream open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) across three multimodal tasks (image-text retrieval, multimodal classification, and image captioning) demonstrate the effectiveness of our attack. Additionally, we successfully transfer AnyAttack to multiple commercial VLMs, including Google's Gemini, Claude's Sonnet, and Microsoft's Copilot. These results reveal an unprecedented risk to VLMs, highlighting the need for effective countermeasures.
Abstract:As Vision-Language Models (VLMs) advance, human-centered Assistive Technologies (ATs) for helping People with Visual Impairments (PVIs) are evolving into generalists, capable of performing multiple tasks simultaneously. However, benchmarking VLMs for ATs remains under-explored. To bridge this gap, we first create a novel AT benchmark (@Bench). Guided by a pre-design user study with PVIs, our benchmark includes the five most crucial vision-language tasks: Panoptic Segmentation, Depth Estimation, Optical Character Recognition (OCR), Image Captioning, and Visual Question Answering (VQA). Besides, we propose a novel AT model (@Model) that addresses all tasks simultaneously and can be expanded to more assistive functions for helping PVIs. Our framework exhibits outstanding performance across tasks by integrating multi-modal information, and it offers PVIs a more comprehensive assistance. Extensive experiments prove the effectiveness and generalizability of our framework.
Abstract:In the field of autonomous driving, Bird's-Eye-View (BEV) perception has attracted increasing attention in the community since it provides more comprehensive information compared with pinhole front-view images and panoramas. Traditional BEV methods, which rely on multiple narrow-field cameras and complex pose estimations, often face calibration and synchronization issues. To break the wall of the aforementioned challenges, in this work, we introduce OneBEV, a novel BEV semantic mapping approach using merely a single panoramic image as input, simplifying the mapping process and reducing computational complexities. A distortion-aware module termed Mamba View Transformation (MVT) is specifically designed to handle the spatial distortions in panoramas, transforming front-view features into BEV features without leveraging traditional attention mechanisms. Apart from the efficient framework, we contribute two datasets, i.e., nuScenes-360 and DeepAccident-360, tailored for the OneBEV task. Experimental results showcase that OneBEV achieves state-of-the-art performance with 51.1% and 36.1% mIoU on nuScenes-360 and DeepAccident-360, respectively. This work advances BEV semantic mapping in autonomous driving, paving the way for more advanced and reliable autonomous systems.
Abstract:With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in models, particularly in recommender systems where historical data contains sensitive user information. Despite recent advances in recommendation unlearning, evaluating unlearning methods comprehensively remains challenging due to the absence of a unified evaluation framework and overlooked aspects of deeper influence, e.g., fairness. To address these gaps, we propose CURE4Rec, the first comprehensive benchmark for recommendation unlearning evaluation. CURE4Rec covers four aspects, i.e., unlearning Completeness, recommendation Utility, unleaRning efficiency, and recommendation fairnEss, under three data selection strategies, i.e., core data, edge data, and random data. Specifically, we consider the deeper influence of unlearning on recommendation fairness and robustness towards data with varying impact levels. We construct multiple datasets with CURE4Rec evaluation and conduct extensive experiments on existing recommendation unlearning methods. Our code is released at https://github.com/xiye7lai/CURE4Rec.
Abstract:Lightweight and effective models are essential for devices with limited resources, such as intelligent vehicles. Structured pruning offers a promising approach to model compression and efficiency enhancement. However, existing methods often tie pruning techniques to specific model architectures or vision tasks. To address this limitation, we propose a novel unified pruning framework Comb, Prune, Distill (CPD), which addresses both model-agnostic and task-agnostic concerns simultaneously. Our framework employs a combing step to resolve hierarchical layer-wise dependency issues, enabling architecture independence. Additionally, the pruning pipeline adaptively remove parameters based on the importance scoring metrics regardless of vision tasks. To support the model in retaining its learned information, we introduce knowledge distillation during the pruning step. Extensive experiments demonstrate the generalizability of our framework, encompassing both convolutional neural network (CNN) and transformer models, as well as image classification and segmentation tasks. In image classification we achieve a speedup of up to x4.3 with a accuracy loss of 1.8% and in semantic segmentation up to x1.89 with a 5.1% loss in mIoU.
Abstract:In this study, we delve into the Structured State Space Model (S4), Change Point Detection methodologies, and the Switching Non-linear Dynamics System (SNLDS). Our central proposition is an enhanced inference technique and long-range dependency method for SNLDS. The cornerstone of our approach is the fusion of S4 and SNLDS, leveraging the strengths of both models to effectively address the intricacies of long-range dependencies in switching time series. Through rigorous testing, we demonstrate that our proposed methodology adeptly segments and reproduces long-range dependencies in both the 1-D Lorenz dataset and the 2-D bouncing ball dataset. Notably, our integrated approach outperforms the standalone SNLDS in these tasks.
Abstract:In recent years, there have been significant advancements in applying attention mechanisms to point cloud analysis. However, attention module variants featured in various research papers often operate under diverse settings and tasks, incorporating potential training strategies. This heterogeneity poses challenges in establishing a fair comparison among these attention module variants. In this paper, we address this issue by rethinking and exploring attention module design within a consistent base framework and settings. Both global-based and local-based attention methods are studied, with a focus on the selection basis and scales of neighbors for local-based attention. Different combinations of aggregated local features and computation methods for attention scores are evaluated, ranging from the initial addition/concatenation-based approach to the widely adopted dot product-based method and the recently proposed vector attention technique. Various position encoding methods are also investigated. Our extensive experimental analysis reveals that there is no universally optimal design across diverse point cloud tasks. Instead, drawing from best practices, we propose tailored attention modules for specific tasks, leading to superior performance on point cloud classification and segmentation benchmarks.