Abstract:Accurate prediction of mmWave time-varying channels is essential for mitigating the issue of channel aging in complex scenarios owing to high user mobility. Existing channel prediction methods have limitations: classical model-based methods often struggle to track highly nonlinear channel dynamics due to limited expert knowledge, while emerging data-driven methods typically require substantial labeled data for effective training and often lack interpretability. To address these issues, this paper proposes a novel hybrid method that integrates a data-driven neural network into a conventional model-based workflow based on a state-space model (SSM), implicitly tracking complex channel dynamics from data without requiring precise expert knowledge. Additionally, a novel unsupervised learning strategy is developed to train the embedded neural network solely with unlabeled data. Theoretical analyses and ablation studies are conducted to interpret the enhanced benefits gained from the hybrid integration. Numerical simulations based on the 3GPP mmWave channel model corroborate the superior prediction accuracy of the proposed method, compared to state-of-the-art methods that are either purely model-based or data-driven. Furthermore, extensive experiments validate its robustness against various challenging factors, including among others severe channel variations and high noise levels.
Abstract:Training generative models to sample from unnormalized density functions is an important and challenging task in machine learning. Traditional training methods often rely on the reverse Kullback-Leibler (KL) divergence due to its tractability. However, the mode-seeking behavior of reverse KL hinders effective approximation of multi-modal target distributions. To address this, we propose to minimize the reverse KL along diffusion trajectories of both model and target densities. We refer to this objective as the reverse diffusive KL divergence, which allows the model to capture multiple modes. Leveraging this objective, we train neural samplers that can efficiently generate samples from the target distribution in one step. We demonstrate that our method enhances sampling performance across various Boltzmann distributions, including both synthetic multi-modal densities and n-body particle systems.
Abstract:Current methods for compressing neural network weights, such as decomposition, pruning, quantization, and channel simulation, often overlook the inherent symmetries within these networks and thus waste bits on encoding redundant information. In this paper, we propose a format based on bits-back coding for storing rotationally symmetric Transformer weights more efficiently than the usual array layout at the same floating-point precision. We evaluate our method on Large Language Models (LLMs) pruned by SliceGPT (Ashkboos et al., 2024) and achieve a 3-5% reduction in total bit usage for free across different model sizes and architectures without impacting model performance within a certain numerical precision.
Abstract:Developing a robust speech emotion recognition (SER) system in noisy conditions faces challenges posed by different noise properties. Most previous studies have not considered the impact of human speech noise, thus limiting the application scope of SER. In this paper, we propose a novel two-stage framework for the problem by cascading target speaker extraction (TSE) method and SER. We first train a TSE model to extract the speech of target speaker from a mixture. Then, in the second stage, we utilize the extracted speech for SER training. Additionally, we explore a joint training of TSE and SER models in the second stage. Our developed system achieves a 14.33% improvement in unweighted accuracy (UA) compared to a baseline without using TSE method, demonstrating the effectiveness of our framework in mitigating the impact of human speech noise. Moreover, we conduct experiments considering speaker gender, showing that our framework performs particularly well in different-gender mixture.
Abstract:Diffusion models have shown promising potential for advancing Boltzmann Generators. However, two critical challenges persist: (1) inherent errors in samples due to model imperfections, and (2) the requirement of hundreds of functional evaluations (NFEs) to achieve high-quality samples. While existing solutions like importance sampling and distillation address these issues separately, they are often incompatible, as most distillation models lack the necessary density information for importance sampling. This paper introduces a novel sampling method that effectively combines Consistency Models (CMs) with importance sampling. We evaluate our approach on both synthetic energy functions and equivariant n-body particle systems. Our method produces unbiased samples using only 6-25 NFEs while achieving a comparable Effective Sample Size (ESS) to Denoising Diffusion Probabilistic Models (DDPMs) that require approximately 100 NFEs.
Abstract:Moment retrieval aims to locate the most relevant moment in an untrimmed video based on a given natural language query. Existing solutions can be roughly categorized into moment-based and clip-based methods. The former often involves heavy computations, while the latter, due to overlooking coarse-grained information, typically underperforms compared to moment-based models. Hence, this paper proposes a novel 2-Dimensional Pointer-based Machine Reading Comprehension for Moment Retrieval Choice (2DP-2MRC) model to address the issue of imprecise localization in clip-based methods while maintaining lower computational complexity than moment-based methods. Specifically, we introduce an AV-Encoder to capture coarse-grained information at moment and video levels. Additionally, a 2D pointer encoder module is introduced to further enhance boundary detection for target moment. Extensive experiments on the HiREST dataset demonstrate that 2DP-2MRC significantly outperforms existing baseline models.
Abstract:Relative entropy coding (REC) algorithms encode a random sample following a target distribution $Q$, using a coding distribution $P$ shared between the sender and receiver. Sadly, general REC algorithms suffer from prohibitive encoding times, at least on the order of $2^{D_{\text{KL}}[Q||P]}$, and faster algorithms are limited to very specific settings. This work addresses this issue by introducing a REC scheme utilizing space partitioning to reduce runtime in practical scenarios. We provide theoretical analyses of our method and demonstrate its effectiveness with both toy examples and practical applications. Notably, our method successfully handles REC tasks with $D_{\text{KL}}[Q||P]$ about three times what previous methods can manage and reduces the compression rate by approximately 5-15\% in VAE-based lossless compression on MNIST and INR-based lossy compression on CIFAR-10 compared to previous methods, significantly improving the practicality of REC for neural compression.
Abstract:We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models. Code and pretrained models are publicly available at github.com/Tencent/HunyuanDiT
Abstract:Diffusion models (DMs) are capable of generating remarkably high-quality samples by iteratively denoising a random vector, a process that corresponds to moving along the probability flow ordinary differential equation (PF ODE). Interestingly, DMs can also invert an input image to noise by moving backward along the PF ODE, a key operation for downstream tasks such as interpolation and image editing. However, the iterative nature of this process restricts its speed, hindering its broader application. Recently, Consistency Models (CMs) have emerged to address this challenge by approximating the integral of the PF ODE, largely reducing the number of iterations. Yet, the absence of an explicit ODE solver complicates the inversion process. To resolve this, we introduce the Bidirectional Consistency Model (BCM), which learns a single neural network that enables both forward and backward traversal along the PF ODE, efficiently unifying generation and inversion tasks within one framework. Notably, our proposed method enables one-step generation and inversion while also allowing the use of additional steps to enhance generation quality or reduce reconstruction error. Furthermore, by leveraging our model's bidirectional consistency, we introduce a sampling strategy that can enhance FID while preserving the generated image content. We further showcase our model's capabilities in several downstream tasks, such as interpolation and inpainting, and present demonstrations of potential applications, including blind restoration of compressed images and defending black-box adversarial attacks.
Abstract:This short communication addresses the problem of elliptic localization with outlier measurements, whose occurrences are prevalent in various location-enabled applications and can significantly compromise the positioning performance if not adequately handled. In contrast to the reliance on $M$-estimation adopted in the majority of existing solutions, we take a different path, specifically exploring the worst-case robust approximation criterion, to bolster resistance of the elliptic location estimator against outliers. From a geometric standpoint, our method boils down to pinpointing the Chebyshev center of the feasible set determined by the available bistatic ranges with bounded measurement errors. For a practical approach to the associated min-max problem, we convert it into the well-established convex optimization framework of semidefinite programming (SDP). Numerical simulations confirm that our SDP-based technique can outperform a number of existing elliptic localization schemes in terms of positioning accuracy in Gaussian mixture noise, a common type of impulsive interference in the context of range-based localization.