MPI-IS
Abstract:As Artificial Intelligence (AI) systems increasingly influence decision-making across various fields, the need to attribute responsibility for undesirable outcomes has become essential, though complicated by the complex interplay between humans and AI. Existing attribution methods based on actual causality and Shapley values tend to disproportionately blame agents who contribute more to an outcome and rely on real-world measures of blameworthiness that may misalign with responsible AI standards. This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems, measuring overall blameworthiness while employing counterfactual reasoning to account for agents' expected epistemic levels. Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
Abstract:Recent advances in artificial intelligence (AI) have produced systems capable of increasingly sophisticated performance on cognitive tasks. However, AI systems still struggle in critical ways: unpredictable and novel environments (robustness), lack of transparency in their reasoning (explainability), challenges in communication and commitment (cooperation), and risks due to potential harmful actions (safety). We argue that these shortcomings stem from one overarching failure: AI systems lack wisdom. Drawing from cognitive and social sciences, we define wisdom as the ability to navigate intractable problems - those that are ambiguous, radically uncertain, novel, chaotic, or computationally explosive - through effective task-level and metacognitive strategies. While AI research has focused on task-level strategies, metacognition - the ability to reflect on and regulate one's thought processes - is underdeveloped in AI systems. In humans, metacognitive strategies such as recognizing the limits of one's knowledge, considering diverse perspectives, and adapting to context are essential for wise decision-making. We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety. By focusing on developing wise AI, we suggest an alternative to aligning AI with specific human values - a task fraught with conceptual and practical difficulties. Instead, wise AI systems can thoughtfully navigate complex situations, account for diverse human values, and avoid harmful actions. We discuss potential approaches to building wise AI, including benchmarking metacognitive abilities and training AI systems to employ wise reasoning. Prioritizing metacognition in AI research will lead to systems that act not only intelligently but also wisely in complex, real-world situations.
Abstract:Inferring atmospheric properties of exoplanets from observed spectra is key to understanding their formation, evolution, and habitability. Since traditional Bayesian approaches to atmospheric retrieval (e.g., nested sampling) are computationally expensive, a growing number of machine learning (ML) methods such as neural posterior estimation (NPE) have been proposed. We seek to make ML-based atmospheric retrieval (1) more reliable and accurate with verified results, and (2) more flexible with respect to the underlying neural networks and the choice of the assumed noise models. First, we adopt flow matching posterior estimation (FMPE) as a new ML approach to atmospheric retrieval. FMPE maintains many advantages of NPE, but provides greater architectural flexibility and scalability. Second, we use importance sampling (IS) to verify and correct ML results, and to compute an estimate of the Bayesian evidence. Third, we condition our ML models on the assumed noise level of a spectrum (i.e., error bars), thus making them adaptable to different noise models. Both our noise level-conditional FMPE and NPE models perform on par with nested sampling across a range of noise levels when tested on simulated data. FMPE trains about 3 times faster than NPE and yields higher IS efficiencies. IS successfully corrects inaccurate ML results, identifies model failures via low efficiencies, and provides accurate estimates of the Bayesian evidence. FMPE is a powerful alternative to NPE for fast, amortized, and parallelizable atmospheric retrieval. IS can verify results, thus helping to build confidence in ML-based approaches, while also facilitating model comparison via the evidence ratio. Noise level conditioning allows design studies for future instruments to be scaled up, for example, in terms of the range of signal-to-noise ratios.
Abstract:Large language models (LLMs) can solve arithmetic word problems with high accuracy, but little is known about how well they generalize to problems that are more complex than the ones on which they have been trained. Empirical investigations of such questions are impeded by two major flaws of current evaluations: (i) much of the evaluation data is contaminated, in the sense that it has already been seen during training, and (ii) benchmark datasets do not capture how problem proofs may be arbitrarily complex in various ways. As a step towards addressing these issues, we present a framework for evaluating LLMs on problems that have arbitrarily complex arithmetic proofs, called MathGAP. MathGAP generates problems that follow fixed proof specifications -- along with chain-of-thought reasoning annotations -- enabling systematic studies on generalization with respect to arithmetic proof complexity. We apply MathGAP to analyze how in-context learning interacts with generalization to problems that have more complex proofs. We find that among the models tested, most show a significant decrease in performance as proofs get deeper and wider. This effect is more pronounced in complex, nonlinear proof structures, which are challenging even for GPT-4o. Surprisingly, providing in-context examples from the same distribution as the test set is not always beneficial for performance. In particular, zero-shot prompting as well as demonstrating a diverse range of examples that are less complex than the test data sometimes yield similar or higher accuracies.
Abstract:Generative models lack rigorous statistical guarantees for their outputs and are therefore unreliable in safety-critical applications. In this work, we propose Sequential Conformal Prediction for Generative Models (SCOPE-Gen), a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee called conformal admissibility control. This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example. To this end, our method first samples an initial set of i.i.d. examples from a black box generative model. Then, this set is iteratively pruned via so-called greedy filters. As a consequence of the iterative generation procedure, admissibility of the final prediction set factorizes as a Markov chain. This factorization is crucial, because it allows to control each factor separately, using conformal prediction. In comparison to prior work, our method demonstrates a large reduction in the number of admissibility evaluations during calibration. This reduction is important in safety-critical applications, where these evaluations must be conducted manually by domain experts and are therefore costly and time consuming. We highlight the advantages of our method in terms of admissibility evaluations and cardinality of the prediction sets through experiments in natural language generation and molecular graph extension tasks.
Abstract:It has been a long-standing research goal to endow robot hands with human-level dexterity. Bi-manual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but contact-rich manipulation problems. Although reinforcement learning based approaches have shown promising results in single-task performance, these methods struggle in a multi-song setting. Our work aims to close this gap and, thereby, enable imitation learning approaches for robot piano playing at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset, containing bi-manual robot piano playing motion data of more than one million trajectories. We formulate finger placements as an optimal transport problem, thus, enabling automatic annotation of vast amounts of unlabeled songs. Benchmarking existing imitation learning approaches shows that such approaches reach state-of-the-art robot piano playing performance by leveraging RP1M.
Abstract:Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.
Abstract:Mergers of binary neutron stars (BNSs) emit signals in both the gravitational-wave (GW) and electromagnetic (EM) spectra. Famously, the 2017 multi-messenger observation of GW170817 led to scientific discoveries across cosmology, nuclear physics, and gravity. Central to these results were the sky localization and distance obtained from GW data, which, in the case of GW170817, helped to identify the associated EM transient, AT 2017gfo, 11 hours after the GW signal. Fast analysis of GW data is critical for directing time-sensitive EM observations; however, due to challenges arising from the length and complexity of signals, it is often necessary to make approximations that sacrifice accuracy. Here, we develop a machine learning approach that performs complete BNS inference in just one second without making any such approximations. This is enabled by a new method for explicit integration of physical domain knowledge into neural networks. Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $\sim30\%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses, which can be used to prioritize expensive telescope time. Additionally, the flexibility and reduced cost of our method open new opportunities for equation-of-state and waveform systematics studies. Finally, we demonstrate that our method scales to extremely long signals, up to an hour in length, thus serving as a blueprint for data analysis for next-generation ground- and space-based detectors.
Abstract:As large language models (LLMs) are deployed in more and more real-world situations, it is crucial to understand their decision-making when faced with moral dilemmas. Inspired by a large-scale cross-cultural study of human moral preferences, "The Moral Machine Experiment", we set up the same set of moral choices for LLMs. We translate 1K vignettes of moral dilemmas, parametrically varied across key axes, into 100+ languages, and reveal the preferences of LLMs in each of these languages. We then compare the responses of LLMs to that of human speakers of those languages, harnessing a dataset of 40 million human moral judgments. We discover that LLMs are more aligned with human preferences in languages such as English, Korean, Hungarian, and Chinese, but less aligned in languages such as Hindi and Somali (in Africa). Moreover, we characterize the explanations LLMs give for their moral choices and find that fairness is the most dominant supporting reason behind GPT-4's decisions and utilitarianism by GPT-3. We also discover "language inequality" (which we define as the model's different development levels in different languages) in a series of meta-properties of moral decision making.
Abstract:We advance the recently proposed neuro-symbolic Differentiable Tree Machine, which learns tree operations using a combination of transformers and Tensor Product Representations. We investigate the architecture and propose two key components. We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts. This results in a Differentiable Tree Experts model with a constant number of parameters for any arbitrary number of steps in the computation, compared to the previous method in the Differentiable Tree Machine with a linear growth. Given this flexibility in the number of steps, we additionally propose a new termination algorithm to provide the model the power to choose how many steps to make automatically. The resulting Terminating Differentiable Tree Experts model sluggishly learns to predict the number of steps without an oracle. It can do so while maintaining the learning capabilities of the model, converging to the optimal amount of steps.