Abstract:As Artificial Intelligence (AI) systems increasingly influence decision-making across various fields, the need to attribute responsibility for undesirable outcomes has become essential, though complicated by the complex interplay between humans and AI. Existing attribution methods based on actual causality and Shapley values tend to disproportionately blame agents who contribute more to an outcome and rely on real-world measures of blameworthiness that may misalign with responsible AI standards. This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems, measuring overall blameworthiness while employing counterfactual reasoning to account for agents' expected epistemic levels. Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
Abstract:As large language models (LLMs) are deployed in more and more real-world situations, it is crucial to understand their decision-making when faced with moral dilemmas. Inspired by a large-scale cross-cultural study of human moral preferences, "The Moral Machine Experiment", we set up the same set of moral choices for LLMs. We translate 1K vignettes of moral dilemmas, parametrically varied across key axes, into 100+ languages, and reveal the preferences of LLMs in each of these languages. We then compare the responses of LLMs to that of human speakers of those languages, harnessing a dataset of 40 million human moral judgments. We discover that LLMs are more aligned with human preferences in languages such as English, Korean, Hungarian, and Chinese, but less aligned in languages such as Hindi and Somali (in Africa). Moreover, we characterize the explanations LLMs give for their moral choices and find that fairness is the most dominant supporting reason behind GPT-4's decisions and utilitarianism by GPT-3. We also discover "language inequality" (which we define as the model's different development levels in different languages) in a series of meta-properties of moral decision making.
Abstract:Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.
Abstract:Pre-trained language encoders -- functions that represent text as vectors -- are an integral component of many NLP tasks. We tackle a natural question in language encoder analysis: What does it mean for two encoders to be similar? We contend that a faithful measure of similarity needs to be \emph{intrinsic}, that is, task-independent, yet still be informative of \emph{extrinsic} similarity -- the performance on downstream tasks. It is common to consider two encoders similar if they are \emph{homotopic}, i.e., if they can be aligned through some transformation. In this spirit, we study the properties of \emph{affine} alignment of language encoders and its implications on extrinsic similarity. We find that while affine alignment is fundamentally an asymmetric notion of similarity, it is still informative of extrinsic similarity. We confirm this on datasets of natural language representations. Beyond providing useful bounds on extrinsic similarity, affine intrinsic similarity also allows us to begin uncovering the structure of the space of pre-trained encoders by defining an order over them.
Abstract:Humans have an innate drive to seek out causality. Whether fuelled by curiosity or specific goals, we constantly question why things happen, how they are interconnected, and many other related phenomena. To develop AI agents capable of addressing this natural human quest for causality, we urgently need a comprehensive dataset of natural causal questions. Unfortunately, existing datasets either contain only artificially-crafted questions that do not reflect real AI usage scenarios or have limited coverage of questions from specific sources. To address this gap, we present CausalQuest, a dataset of 13,500 naturally occurring questions sourced from social networks, search engines, and AI assistants. We formalize the definition of causal questions and establish a taxonomy for finer-grained classification. Through a combined effort of human annotators and large language models (LLMs), we carefully label the dataset. We find that 42% of the questions humans ask are indeed causal, with the majority seeking to understand the causes behind given effects. Using this dataset, we train efficient classifiers (up to 2.85B parameters) for the binary task of identifying causal questions, achieving high performance with F1 scores of up to 0.877. We conclude with a rich set of future research directions that can build upon our data and models.
Abstract:Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at https://github.com/jiarui-liu/IP.
Abstract:In an era of model and data proliferation in machine learning/AI especially marked by the rapid advancement of open-sourced technologies, there arises a critical need for standardized consistent documentation. Our work addresses the information incompleteness in current human-generated model and data cards. We propose an automated generation approach using Large Language Models (LLMs). Our key contributions include the establishment of CardBench, a comprehensive dataset aggregated from over 4.8k model cards and 1.4k data cards, coupled with the development of the CardGen pipeline comprising a two-step retrieval process. Our approach exhibits enhanced completeness, objectivity, and faithfulness in generated model and data cards, a significant step in responsible AI documentation practices ensuring better accountability and traceability.
Abstract:Traditionally, natural language processing (NLP) models often use a rich set of features created by linguistic expertise, such as semantic representations. However, in the era of large language models (LLMs), more and more tasks are turned into generic, end-to-end sequence generation problems. In this paper, we investigate the question: what is the role of semantic representations in the era of LLMs? Specifically, we investigate the effect of Abstract Meaning Representation (AMR) across five diverse NLP tasks. We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT, and find that it generally hurts performance more than it helps. To investigate what AMR may have to offer on these tasks, we conduct a series of analysis experiments. We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions, named entities, and in the final inference step where the LLM must connect its reasoning over the AMR to its prediction. We recommend focusing on these areas for future work in semantic representations for LLMs. Our code: https://github.com/causalNLP/amr_llm.
Abstract:In the rapidly evolving field of artificial intelligence, ensuring safe decision-making of Large Language Models (LLMs) is a significant challenge. This paper introduces Governance of the Commons Simulation (GovSim), a simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. Through this simulation environment, we explore the dynamics of resource sharing among AI agents, highlighting the importance of ethical considerations, strategic planning, and negotiation skills. GovSim is versatile and supports any text-based agent, including LLMs agents. Using the Generative Agent framework, we create a standard agent that facilitates the integration of different LLMs. Our findings reveal that within GovSim, only two out of 15 tested LLMs managed to achieve a sustainable outcome, indicating a significant gap in the ability of models to manage shared resources. Furthermore, we find that by removing the ability of agents to communicate, they overuse the shared resource, highlighting the importance of communication for cooperation. Interestingly, most LLMs lack the ability to make universalized hypotheses, which highlights a significant weakness in their reasoning skills. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface.
Abstract:Sentiment analysis (SA) aims to identify the sentiment expressed in a text, such as a product review. Given a review and the sentiment associated with it, this paper formulates SA as a combination of two tasks: (1) a causal discovery task that distinguishes whether a review "primes" the sentiment (Causal Hypothesis C1), or the sentiment "primes" the review (Causal Hypothesis C2); and (2) the traditional prediction task to model the sentiment using the review as input. Using the peak-end rule in psychology, we classify a sample as C1 if its overall sentiment score approximates an average of all the sentence-level sentiments in the review, and C2 if the overall sentiment score approximates an average of the peak and end sentiments. For the prediction task, we use the discovered causal mechanisms behind the samples to improve the performance of LLMs by proposing causal prompts that give the models an inductive bias of the underlying causal graph, leading to substantial improvements by up to 32.13 F1 points on zero-shot five-class SA. Our code is at https://github.com/cogito233/causal-sa