Abstract:Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Abstract:Characterizing the computational power of neural network architectures in terms of formal language theory remains a crucial line of research, as it describes lower and upper bounds on the reasoning capabilities of modern AI. However, when empirically testing these bounds, existing work often leaves a discrepancy between experiments and the formal claims they are meant to support. The problem is that formal language theory pertains specifically to recognizers: machines that receive a string as input and classify whether it belongs to a language. On the other hand, it is common to instead use proxy tasks that are similar in only an informal sense, such as language modeling or sequence-to-sequence transduction. We correct this mismatch by training and evaluating neural networks directly as binary classifiers of strings, using a general method that can be applied to a wide variety of languages. As part of this, we extend an algorithm recently proposed by Sn{\ae}bjarnarson et al. (2024) to do length-controlled sampling of strings from regular languages, with much better asymptotic time complexity than previous methods. We provide results on a variety of languages across the Chomsky hierarchy for three neural architectures: a simple RNN, an LSTM, and a causally-masked transformer. We find that the RNN and LSTM often outperform the transformer, and that auxiliary training objectives such as language modeling can help, although no single objective uniformly improves performance across languages and architectures. Our contributions will facilitate theoretically sound empirical testing of language recognition claims in future work. We have released our datasets as a benchmark called FLaRe (Formal Language Recognition), along with our code.
Abstract:Extracting finite state automata (FSAs) from black-box models offers a powerful approach to gaining interpretable insights into complex model behaviors. To support this pursuit, we present a weighted variant of Angluin's (1987) $\mathbf{L^*}$ algorithm for learning FSAs. We stay faithful to the original algorithm, devising a way to exactly learn deterministic weighted FSAs whose weights support division. Furthermore, we formulate the learning process in a manner that highlights the connection with FSA minimization, showing how $\mathbf{L^*}$ directly learns a minimal automaton for the target language.
Abstract:Much theoretical work has described the ability of transformers to represent formal languages. However, linking theoretical results to empirical performance is not straightforward due to the complex interplay between the architecture, the learning algorithm, and training data. To test whether theoretical lower bounds imply \emph{learnability} of formal languages, we turn to recent work relating transformers to $n$-gram language models (LMs). We study transformers' ability to learn random $n$-gram LMs of two kinds: ones with arbitrary next-symbol probabilities and ones where those are defined with shared parameters. We find that classic estimation techniques for $n$-gram LMs such as add-$\lambda$ smoothing outperform transformers on the former, while transformers perform better on the latter, outperforming methods specifically designed to learn $n$-gram LMs.
Abstract:The performance of modern language models (LMs) has been improved by chain-of-thought (CoT) reasoning, i.e., the process of generating intermediate results that guide the model towards a final answer. A possible explanation for this improvement is that CoT reasoning extends an LM's computational power, as RNNs and transformers with additional scratch space are known to be Turing complete. Comparing LMs to Turing machines, however, introduces a category error - Turing machines decide language membership, whereas LMs define distributions over strings. To bridge this gap, we formalize CoT reasoning in a probabilistic setting. We present several results on the representational capacity of recurrent and transformer LMs with CoT reasoning, showing that they can represent the same family of distributions over strings as probabilistic Turing machines.
Abstract:The relationship between the quality of a string and its probability $p(\boldsymbol{y})$ under a language model has been influential in the development of techniques to build good text generation systems. For example, several decoding algorithms have been motivated to manipulate $p(\boldsymbol{y})$ to produce higher-quality text. In this work, we examine the probability--quality relationship in language models explicitly aligned to human preferences, e.g., through Reinforcement Learning through Human Feedback (RLHF). We find that, given a general language model and its aligned version, for corpora sampled from an aligned language model, there exists a trade-off between the average reward and average log-likelihood of the strings under the general language model. We provide a formal treatment of this issue and demonstrate how a choice of sampling adaptor allows for a selection of how much likelihood we exchange for the reward.
Abstract:What can large language models learn? By definition, language models (LM) are distributions over strings. Therefore, an intuitive way of addressing the above question is to formalize it as a matter of learnability of classes of distributions over strings. While prior work in this direction focused on assessing the theoretical limits, in contrast, we seek to understand the empirical learnability. Unlike prior empirical work, we evaluate neural LMs on their home turf-learning probabilistic languages-rather than as classifiers of formal languages. In particular, we investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs. We empirically test the learnability of RLMs as a function of various complexity parameters of the RLM and the hidden state size of the neural LM. We find that the RLM rank, which corresponds to the size of linear space spanned by the logits of its conditional distributions, and the expected length of sampled strings are strong and significant predictors of learnability for both RNNs and Transformers. Several other predictors also reach significance, but with differing patterns between RNNs and Transformers.
Abstract:Pre-trained language encoders -- functions that represent text as vectors -- are an integral component of many NLP tasks. We tackle a natural question in language encoder analysis: What does it mean for two encoders to be similar? We contend that a faithful measure of similarity needs to be \emph{intrinsic}, that is, task-independent, yet still be informative of \emph{extrinsic} similarity -- the performance on downstream tasks. It is common to consider two encoders similar if they are \emph{homotopic}, i.e., if they can be aligned through some transformation. In this spirit, we study the properties of \emph{affine} alignment of language encoders and its implications on extrinsic similarity. We find that while affine alignment is fundamentally an asymmetric notion of similarity, it is still informative of extrinsic similarity. We confirm this on datasets of natural language representations. Beyond providing useful bounds on extrinsic similarity, affine intrinsic similarity also allows us to begin uncovering the structure of the space of pre-trained encoders by defining an order over them.
Abstract:The recent successes and spread of large neural language models (LMs) call for a thorough understanding of their computational ability. Describing their computational abilities through LMs' \emph{representational capacity} is a lively area of research. However, investigation into the representational capacity of neural LMs has predominantly focused on their ability to \emph{recognize} formal languages. For example, recurrent neural networks (RNNs) with Heaviside activations are tightly linked to regular languages, i.e., languages defined by finite-state automata (FSAs). Such results, however, fall short of describing the capabilities of RNN \emph{language models} (LMs), which are definitionally \emph{distributions} over strings. We take a fresh look at the representational capacity of RNN LMs by connecting them to \emph{probabilistic} FSAs and demonstrate that RNN LMs with linearly bounded precision can express arbitrary regular LMs.
Abstract:Plenty of existing work has analyzed the abilities of the transformer architecture by describing its representational capacity with formal models of computation. However, the focus so far has been on analyzing the architecture in terms of language \emph{acceptance}. We contend that this is an ill-suited problem in the study of \emph{language models} (LMs), which are definitionally \emph{probability distributions} over strings. In this paper, we focus on the relationship between transformer LMs and $n$-gram LMs, a simple and historically relevant class of language models. We show that transformer LMs using the hard or sparse attention mechanisms can exactly represent any $n$-gram LM, giving us a concrete lower bound on their probabilistic representational capacity. This provides a first step towards understanding the mechanisms that transformer LMs can use to represent probability distributions over strings.