Abstract:Babel Briefings is a novel dataset featuring 4.7 million news headlines from August 2020 to November 2021, across 30 languages and 54 locations worldwide with English translations of all articles included. Designed for natural language processing and media studies, it serves as a high-quality dataset for training or evaluating language models as well as offering a simple, accessible collection of articles, for example, to analyze global news coverage and cultural narratives. As a simple demonstration of the analyses facilitated by this dataset, we use a basic procedure using a TF-IDF weighted similarity metric to group articles into clusters about the same event. We then visualize the \emph{event signatures} of the event showing articles of which languages appear over time, revealing intuitive features based on the proximity of the event and unexpectedness of the event. The dataset is available on \href{https://www.kaggle.com/datasets/felixludos/babel-briefings}{Kaggle} and \href{https://huggingface.co/datasets/felixludos/babel-briefings}{HuggingFace} with accompanying \href{https://github.com/felixludos/babel-briefings}{GitHub} code.
Abstract:The ability to perform causal reasoning is widely considered a core feature of intelligence. In this work, we investigate whether large language models (LLMs) can coherently reason about causality. Much of the existing work in natural language processing (NLP) focuses on evaluating commonsense causal reasoning in LLMs, thus failing to assess whether a model can perform causal inference in accordance with a set of well-defined formal rules. To address this, we propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al. We compose a large dataset, CLadder, with 10K samples: based on a collection of causal graphs and queries (associational, interventional, and counterfactual), we obtain symbolic questions and ground-truth answers, through an oracle causal inference engine. These are then translated into natural language. We evaluate multiple LLMs on our dataset, and we introduce and evaluate a bespoke chain-of-thought prompting strategy, CausalCoT. We show that our task is highly challenging for LLMs, and we conduct an in-depth analysis to gain deeper insight into the causal reasoning abilities of LLMs. Our data is open-sourced at https://huggingface.co/datasets/causalNLP/cladder, and our code can be found at https://github.com/causalNLP/cladder.
Abstract:The encoders and decoders of autoencoders effectively project the input onto learned manifolds in the latent space and data space respectively. We propose a framework, called latent responses, for probing the learned data manifold using interventions in the latent space. Using this framework, we investigate "holes" in the representation to quantitatively ascertain to what extent the latent space of a trained VAE is consistent with the chosen prior. Furthermore, we use the identified structure to improve interpolation between latent vectors. We evaluate how our analyses improve the quality of the generated samples using the VAE on a variety of benchmark datasets.
Abstract:We study the problem of structuring a learned representation to significantly improve performance without supervision. Unlike most methods which focus on using side information like weak supervision or defining new regularization objectives, we focus on improving the learned representation by structuring the architecture of the model. We propose a self-attention based architecture to make the encoder explicitly associate parts of the representation with parts of the input observation. Meanwhile, our structural decoder architecture encourages a hierarchical structure in the latent space, akin to structural causal models, and learns a natural ordering of the latent mechanisms. We demonstrate how these models learn a representation which improves results in a variety of downstream tasks including generation, disentanglement, and transfer using several challenging and natural image datasets.
Abstract:In this work, we bridge the gap between recent pose estimation and tracking work to develop a powerful method for robots to track objects in their surroundings. Motion-Nets use a segmentation model to segment the scene, and separate translation and rotation models to identify the relative 6D motion of an object between two consecutive frames. We train our method with generated data of floating objects, and then test on several prediction tasks, including one with a real PR2 robot, and a toy control task with a simulated PR2 robot never seen during training. Motion-Nets are able to track the pose of objects with some quantitative accuracy for about 30-60 frames including occlusions and distractors. Additionally, the single step prediction errors remain low even after 100 frames. We also investigate an iterative correction procedure to improve performance for control tasks.
Abstract:In this work, we present an approach to deep visuomotor control using structured deep dynamics models. Our deep dynamics model, a variant of SE3-Nets, learns a low-dimensional pose embedding for visuomotor control via an encoder-decoder structure. Unlike prior work, our dynamics model is structured: given an input scene, our network explicitly learns to segment salient parts and predict their pose-embedding along with their motion modeled as a change in the pose space due to the applied actions. We train our model using a pair of point clouds separated by an action and show that given supervision only in the form of point-wise data associations between the frames our network is able to learn a meaningful segmentation of the scene along with consistent poses. We further show that our model can be used for closed-loop control directly in the learned low-dimensional pose space, where the actions are computed by minimizing error in the pose space using gradient-based methods, similar to traditional model-based control. We present results on controlling a Baxter robot from raw depth data in simulation and in the real world and compare against two baseline deep networks. Our method runs in real-time, achieves good prediction of scene dynamics and outperforms the baseline methods on multiple control runs. Video results can be found at: https://rse-lab.cs.washington.edu/se3-structured-deep-ctrl/