Abstract:As Large Language Models (LLMs) continue to evolve, they are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks. However, LLMs are susceptible to societal biases due to their exposure to human-generated data. Given that LLMs are being used to gain insights into various societal aspects, it is essential to mitigate these biases. To that end, our study investigates the presence of implicit gender biases in multi-agent LLM interactions and proposes two strategies to mitigate these biases. We begin by creating a dataset of scenarios where implicit gender biases might arise, and subsequently develop a metric to assess the presence of biases. Our empirical analysis reveals that LLMs generate outputs characterized by strong implicit bias associations (>= 50\% of the time). Furthermore, these biases tend to escalate following multi-agent interactions. To mitigate them, we propose two strategies: self-reflection with in-context examples (ICE); and supervised fine-tuning. Our research demonstrates that both methods effectively mitigate implicit biases, with the ensemble of fine-tuning and self-reflection proving to be the most successful.
Abstract:As large language models (LLMs) are deployed in more and more real-world situations, it is crucial to understand their decision-making when faced with moral dilemmas. Inspired by a large-scale cross-cultural study of human moral preferences, "The Moral Machine Experiment", we set up the same set of moral choices for LLMs. We translate 1K vignettes of moral dilemmas, parametrically varied across key axes, into 100+ languages, and reveal the preferences of LLMs in each of these languages. We then compare the responses of LLMs to that of human speakers of those languages, harnessing a dataset of 40 million human moral judgments. We discover that LLMs are more aligned with human preferences in languages such as English, Korean, Hungarian, and Chinese, but less aligned in languages such as Hindi and Somali (in Africa). Moreover, we characterize the explanations LLMs give for their moral choices and find that fairness is the most dominant supporting reason behind GPT-4's decisions and utilitarianism by GPT-3. We also discover "language inequality" (which we define as the model's different development levels in different languages) in a series of meta-properties of moral decision making.
Abstract:To address this issue, we formulate translated non-English, geographic, and socioeconomic integrated prompts and evaluate their impact on VL model performance for data from different countries and income groups. Our findings show that geographic and socioeconomic integrated prompts improve VL performance on lower-income data and favor the retrieval of topic appearances commonly found in data from low-income households. From our analyses, we identify and highlight contexts where these strategies yield the most improvements. Our model analysis code is publicly available at https://github.com/Anniejoan/Uplifting-Lower-income-data .
Abstract:When exposed to human-generated data, language models are known to learn and amplify societal biases. While previous works introduced benchmarks that can be used to assess the bias in these models, they rely on assumptions that may not be universally true. For instance, a gender bias dimension commonly used by these metrics is that of family--career, but this may not be the only common bias in certain regions of the world. In this paper, we identify topical differences in gender bias across different regions and propose a region-aware bottom-up approach for bias assessment. Our proposed approach uses gender-aligned topics for a given region and identifies gender bias dimensions in the form of topic pairs that are likely to capture gender societal biases. Several of our proposed bias topic pairs are on par with human perception of gender biases in these regions in comparison to the existing ones, and we also identify new pairs that are more aligned than the existing ones. In addition, we use our region-aware bias topic pairs in a Word Embedding Association Test (WEAT)-based evaluation metric to test for gender biases across different regions in different data domains. We also find that LLMs have a higher alignment to bias pairs for highly-represented regions showing the importance of region-aware bias evaluation metric.
Abstract:Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.
Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:Humans have an innate drive to seek out causality. Whether fuelled by curiosity or specific goals, we constantly question why things happen, how they are interconnected, and many other related phenomena. To develop AI agents capable of addressing this natural human quest for causality, we urgently need a comprehensive dataset of natural causal questions. Unfortunately, existing datasets either contain only artificially-crafted questions that do not reflect real AI usage scenarios or have limited coverage of questions from specific sources. To address this gap, we present CausalQuest, a dataset of 13,500 naturally occurring questions sourced from social networks, search engines, and AI assistants. We formalize the definition of causal questions and establish a taxonomy for finer-grained classification. Through a combined effort of human annotators and large language models (LLMs), we carefully label the dataset. We find that 42% of the questions humans ask are indeed causal, with the majority seeking to understand the causes behind given effects. Using this dataset, we train efficient classifiers (up to 2.85B parameters) for the binary task of identifying causal questions, achieving high performance with F1 scores of up to 0.877. We conclude with a rich set of future research directions that can build upon our data and models.
Abstract:Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at https://github.com/jiarui-liu/IP.
Abstract:Large language models (LLMs) have demonstrated substantial commonsense understanding through numerous benchmark evaluations. However, their understanding of cultural commonsense remains largely unexamined. In this paper, we conduct a comprehensive examination of the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks. Using several general and cultural commonsense benchmarks, we find that (1) LLMs have a significant discrepancy in performance when tested on culture-specific commonsense knowledge for different cultures; (2) LLMs' general commonsense capability is affected by cultural context; and (3) The language used to query the LLMs can impact their performance on cultural-related tasks. Our study points to the inherent bias in the cultural understanding of LLMs and provides insights that can help develop culturally aware language models.
Abstract:Similar to humans, animals make extensive use of verbal and non-verbal forms of communication, including a large range of audio signals. In this paper, we address dog vocalizations and explore the use of self-supervised speech representation models pre-trained on human speech to address dog bark classification tasks that find parallels in human-centered tasks in speech recognition. We specifically address four tasks: dog recognition, breed identification, gender classification, and context grounding. We show that using speech embedding representations significantly improves over simpler classification baselines. Further, we also find that models pre-trained on large human speech acoustics can provide additional performance boosts on several tasks.