Abstract:As Large Language Models (LLMs) continue to evolve, they are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks. However, LLMs are susceptible to societal biases due to their exposure to human-generated data. Given that LLMs are being used to gain insights into various societal aspects, it is essential to mitigate these biases. To that end, our study investigates the presence of implicit gender biases in multi-agent LLM interactions and proposes two strategies to mitigate these biases. We begin by creating a dataset of scenarios where implicit gender biases might arise, and subsequently develop a metric to assess the presence of biases. Our empirical analysis reveals that LLMs generate outputs characterized by strong implicit bias associations (>= 50\% of the time). Furthermore, these biases tend to escalate following multi-agent interactions. To mitigate them, we propose two strategies: self-reflection with in-context examples (ICE); and supervised fine-tuning. Our research demonstrates that both methods effectively mitigate implicit biases, with the ensemble of fine-tuning and self-reflection proving to be the most successful.
Abstract:Large Deep Learning models are compressed and deployed for specific applications. However, current Deep Learning model compression methods do not utilize the information about the target application. As a result, the compressed models are application agnostic. Our goal is to customize the model compression process to create a compressed model that will perform better for the target application. Our method, Application Specific Compression (ASC), identifies and prunes components of the large Deep Learning model that are redundant specifically for the given target application. The intuition of our work is to prune the parts of the network that do not contribute significantly to updating the data representation for the given application. We have experimented with the BERT family of models for three applications: Extractive QA, Natural Language Inference, and Paraphrase Identification. We observe that customized compressed models created using ASC method perform better than existing model compression methods and off-the-shelf compressed models.
Abstract:When exposed to human-generated data, language models are known to learn and amplify societal biases. While previous works introduced benchmarks that can be used to assess the bias in these models, they rely on assumptions that may not be universally true. For instance, a gender bias dimension commonly used by these metrics is that of family--career, but this may not be the only common bias in certain regions of the world. In this paper, we identify topical differences in gender bias across different regions and propose a region-aware bottom-up approach for bias assessment. Our proposed approach uses gender-aligned topics for a given region and identifies gender bias dimensions in the form of topic pairs that are likely to capture gender societal biases. Several of our proposed bias topic pairs are on par with human perception of gender biases in these regions in comparison to the existing ones, and we also identify new pairs that are more aligned than the existing ones. In addition, we use our region-aware bias topic pairs in a Word Embedding Association Test (WEAT)-based evaluation metric to test for gender biases across different regions in different data domains. We also find that LLMs have a higher alignment to bias pairs for highly-represented regions showing the importance of region-aware bias evaluation metric.
Abstract:Recent work has shown evidence of 'Clever Hans' behavior in high-performance neural translationese classifiers, where BERT-based classifiers capitalize on spurious correlations, in particular topic information, between data and target classification labels, rather than genuine translationese signals. Translationese signals are subtle (especially for professional translation) and compete with many other signals in the data such as genre, style, author, and, in particular, topic. This raises the general question of how much of the performance of a classifier is really due to spurious correlations in the data versus the signals actually targeted for by the classifier, especially for subtle target signals and in challenging (low resource) data settings. We focus on topic-based spurious correlation and approach the question from two directions: (i) where we have no knowledge about spurious topic information and its distribution in the data, (ii) where we have some indication about the nature of spurious topic correlations. For (i) we develop a measure from first principles capturing alignment of unsupervised topics with target classification labels as an indication of spurious topic information in the data. We show that our measure is the same as purity in clustering and propose a 'topic floor' (as in a 'noise floor') for classification. For (ii) we investigate masking of known spurious topic carriers in classification. Both (i) and (ii) contribute to quantifying and (ii) to mitigating spurious correlations.
Abstract:A representation learning method is considered stable if it consistently generates similar representation of the given data across multiple runs. Word Embedding Methods (WEMs) are a class of representation learning methods that generate dense vector representation for each word in the given text data. The central idea of this paper is to explore the stability measurement of WEMs using intrinsic evaluation based on word similarity. We experiment with three popular WEMs: Word2Vec, GloVe, and fastText. For stability measurement, we investigate the effect of five parameters involved in training these models. We perform experiments using four real-world datasets from different domains: Wikipedia, News, Song lyrics, and European parliament proceedings. We also observe the effect of WEM stability on three downstream tasks: Clustering, POS tagging, and Fairness evaluation. Our experiments indicate that amongst the three WEMs, fastText is the most stable, followed by GloVe and Word2Vec.