Abstract:Cultural and language factors significantly influence counseling, but Natural Language Processing research has not yet examined whether the findings of conversational analysis for counseling conducted in English apply to other languages. This paper presents a first step towards this direction. We introduce MIDAS (Motivational Interviewing Dataset in Spanish), a counseling dataset created from public video sources that contains expert annotations for counseling reflections and questions. Using this dataset, we explore language-based differences in counselor behavior in English and Spanish and develop classifiers in monolingual and multilingual settings, demonstrating its applications in counselor behavioral coding tasks.
Abstract:Video meeting platforms display conversations linearly through transcripts or summaries. However, ideas during a meeting do not emerge linearly. We leverage LLMs to create dialogue maps in real time to help people visually structure and connect ideas. Balancing the need to reduce the cognitive load on users during the conversation while giving them sufficient control when using AI, we explore two system variants that encompass different levels of AI assistance. In Human-Map, AI generates summaries of conversations as nodes, and users create dialogue maps with the nodes. In AI-Map, AI produces dialogue maps where users can make edits. We ran a within-subject experiment with ten pairs of users, comparing the two MeetMap variants and a baseline. Users preferred MeetMap over traditional methods for taking notes, which aligned better with their mental models of conversations. Users liked the ease of use for AI-Map due to the low effort demands and appreciated the hands-on opportunity in Human-Map for sense-making.
Abstract:Given the increasing demand for mental health assistance, artificial intelligence (AI), particularly large language models (LLMs), may be valuable for integration into automated clinical support systems. In this work, we leverage a decision transformer architecture for topic recommendation in counseling conversations between patients and mental health professionals. The architecture is utilized for offline reinforcement learning, and we extract states (dialogue turn embeddings), actions (conversation topics), and rewards (scores measuring the alignment between patient and therapist) from previous turns within a conversation to train a decision transformer model. We demonstrate an improvement over baseline reinforcement learning methods, and propose a novel system of utilizing our model's output as synthetic labels for fine-tuning a large language model for the same task. Although our implementation based on LLaMA-2 7B has mixed results, future work can undoubtedly build on the design.
Abstract:Recent progress in large language models has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that ``it's all been solved.'' Not surprisingly, this has in turn made many NLP researchers -- especially those at the beginning of their career -- wonder about what NLP research area they should focus on. This document is a compilation of NLP research directions that are rich for exploration, reflecting the views of a diverse group of PhD students in an academic research lab. While we identify many research areas, many others exist; we do not cover those areas that are currently addressed by LLMs but where LLMs lag behind in performance, or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm