Abstract:Video meeting platforms display conversations linearly through transcripts or summaries. However, ideas during a meeting do not emerge linearly. We leverage LLMs to create dialogue maps in real time to help people visually structure and connect ideas. Balancing the need to reduce the cognitive load on users during the conversation while giving them sufficient control when using AI, we explore two system variants that encompass different levels of AI assistance. In Human-Map, AI generates summaries of conversations as nodes, and users create dialogue maps with the nodes. In AI-Map, AI produces dialogue maps where users can make edits. We ran a within-subject experiment with ten pairs of users, comparing the two MeetMap variants and a baseline. Users preferred MeetMap over traditional methods for taking notes, which aligned better with their mental models of conversations. Users liked the ease of use for AI-Map due to the low effort demands and appreciated the hands-on opportunity in Human-Map for sense-making.
Abstract:Public health intervention techniques have been highly significant in reducing the negative impact of several epidemics and pandemics. Among all of the wide-spread diseases, one of the most dangerous one has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or Coronavirus disease 2019 (COVID-19). The impact of the virus has been observed in over 200 countries leading to hospitalizations and deaths of millions of people. Currently existing COVID-19 risk estimation tools provided to the general public have been highly variable during the pandemic due to its dependency on rapidly evolving factors such as community transmission levels and variants. There has also been confusion surrounding certain personal protective strategies such as risk reduction by mask-wearing and vaccination. In order to create a simplified easy-to-use tool for estimating different individual risks associated with carrying out daily-life activity, we developed COVID-19 Activity Risk Calculator (CovARC). CovARC serves as a gamified public health intervention as users can "play with" how different risks associated with COVID-19 would change depending on several different factors when carrying out a daily routine activity. Empowering the public to make informed, data-driven decisions about safely engaging in activities may help to reduce COVID- 19 levels in the community. In this study, we demonstrate a streamlined, scalable and accurate COVID-19 risk calculation system. Our study also showcases quantitatively, the increased impact of interventions such as vaccination and mask-wearing when cases are higher, which could prove as a validity to inform and support policy decisions around mask mandate case thresholds and other non-pharmaceutical interventions.