Abstract:Training generative models to sample from unnormalized density functions is an important and challenging task in machine learning. Traditional training methods often rely on the reverse Kullback-Leibler (KL) divergence due to its tractability. However, the mode-seeking behavior of reverse KL hinders effective approximation of multi-modal target distributions. To address this, we propose to minimize the reverse KL along diffusion trajectories of both model and target densities. We refer to this objective as the reverse diffusive KL divergence, which allows the model to capture multiple modes. Leveraging this objective, we train neural samplers that can efficiently generate samples from the target distribution in one step. We demonstrate that our method enhances sampling performance across various Boltzmann distributions, including both synthetic multi-modal densities and n-body particle systems.
Abstract:Global convolutions have shown increasing promise as powerful general-purpose sequence models. However, training long convolutions is challenging, and kernel parameterizations must be able to learn long-range dependencies without overfitting. This work introduces reparameterized multi-resolution convolutions ($\texttt{MRConv}$), a novel approach to parameterizing global convolutional kernels for long-sequence modelling. By leveraging multi-resolution convolutions, incorporating structural reparameterization and introducing learnable kernel decay, $\texttt{MRConv}$ learns expressive long-range kernels that perform well across various data modalities. Our experiments demonstrate state-of-the-art performance on the Long Range Arena, Sequential CIFAR, and Speech Commands tasks among convolution models and linear-time transformers. Moreover, we report improved performance on ImageNet classification by replacing 2D convolutions with 1D $\texttt{MRConv}$ layers.
Abstract:The probabilistic diffusion model has become highly effective across various domains. Typically, sampling from a diffusion model involves using a denoising distribution characterized by a Gaussian with a learned mean and either fixed or learned covariances. In this paper, we leverage the recently proposed full covariance moment matching technique and introduce a novel method for learning covariances. Unlike traditional data-driven covariance approximation approaches, our method involves directly regressing the optimal analytic covariance using a new, unbiased objective named Optimal Covariance Matching (OCM). This approach can significantly reduce the approximation error in covariance prediction. We demonstrate how our method can substantially enhance the sampling efficiency of both Markovian (DDPM) and non-Markovian (DDIM) diffusion model families.
Abstract:Retrieval Augmented Generation (RAG) has emerged as an effective solution for mitigating hallucinations in Large Language Models (LLMs). The retrieval stage in RAG typically involves a pre-trained embedding model, which converts queries and passages into vectors to capture their semantics. However, a standard pre-trained embedding model may exhibit sub-optimal performance when applied to specific domain knowledge, necessitating fine-tuning. This paper addresses scenarios where the embeddings are only available from a black-box model. We introduce Model augmented fine-tuning (Mafin) -- a novel approach for fine-tuning a black-box embedding model by augmenting it with a trainable embedding model. Our results demonstrate that Mafin significantly enhances the performance of the black-box embeddings by only requiring the training of a small augmented model. We validate the effectiveness of our method on both labeled and unlabeled datasets, illustrating its broad applicability and efficiency.
Abstract:As large language models (LLMs) become more capable, fine-tuning techniques for aligning with human intent are increasingly important. A key consideration for aligning these models is how to most effectively use human resources, or model resources in the case where LLMs themselves are used as oracles. Reinforcement learning from Human or AI preferences (RLHF/RLAIF) is the most prominent example of such a technique, but is complex and often unstable. Direct Preference Optimization (DPO) has recently been proposed as a simpler and more stable alternative. In this work, we develop an active learning strategy for DPO to make better use of preference labels. We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model and a measure of certainty of the implicit preference model optimized by DPO. We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
Abstract:The inadequate mixing of conventional Markov Chain Monte Carlo (MCMC) methods for multi-modal distributions presents a significant challenge in practical applications such as Bayesian inference and molecular dynamics. Addressing this, we propose Diffusive Gibbs Sampling (DiGS), an innovative family of sampling methods designed for effective sampling from distributions characterized by distant and disconnected modes. DiGS integrates recent developments in diffusion models, leveraging Gaussian convolution to create an auxiliary noisy distribution that bridges isolated modes in the original space and applying Gibbs sampling to alternately draw samples from both spaces. Our approach exhibits a better mixing property for sampling multi-modal distributions than state-of-the-art methods such as parallel tempering. We demonstrate that our sampler attains substantially improved results across various tasks, including mixtures of Gaussians, Bayesian neural networks and molecular dynamics.
Abstract:Continual learning aims to empower artificial intelligence (AI) with strong adaptability to the real world. For this purpose, a desirable solution should properly balance memory stability with learning plasticity, and acquire sufficient compatibility to capture the observed distributions. Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting, but remain difficult to flexibly accommodate incremental changes as biological intelligence (BI) does. By modeling a robust Drosophila learning system that actively regulates forgetting with multiple learning modules, here we propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity, and accordingly coordinates a multi-learner architecture to ensure solution compatibility. Through extensive theoretical and empirical validation, our approach not only clearly enhances the performance of continual learning, especially over synaptic regularization methods in task-incremental settings, but also potentially advances the understanding of neurological adaptive mechanisms, serving as a novel paradigm to progress AI and BI together.
Abstract:Energy-Based Models (EBMs) offer a versatile framework for modeling complex data distributions. However, training and sampling from EBMs continue to pose significant challenges. The widely-used Denoising Score Matching (DSM) method for scalable EBM training suffers from inconsistency issues, causing the energy model to learn a `noisy' data distribution. In this work, we propose an efficient sampling framework: (pseudo)-Gibbs sampling with moment matching, which enables effective sampling from the underlying clean model when given a `noisy' model that has been well-trained via DSM. We explore the benefits of our approach compared to related methods and demonstrate how to scale the method to high-dimensional datasets.
Abstract:Score-based divergences have been widely used in machine learning and statistics applications. Despite their empirical success, a blindness problem has been observed when using these for multi-modal distributions. In this work, we discuss the blindness problem and propose a new family of divergences that can mitigate the blindness problem. We illustrate our proposed divergence in the context of density estimation and report improved performance compared to traditional approaches.
Abstract:We introduce Integrated Weak Learning, a principled framework that integrates weak supervision into the training process of machine learning models. Our approach jointly trains the end-model and a label model that aggregates multiple sources of weak supervision. We introduce a label model that can learn to aggregate weak supervision sources differently for different datapoints and takes into consideration the performance of the end-model during training. We show that our approach outperforms existing weak learning techniques across a set of 6 benchmark classification datasets. When both a small amount of labeled data and weak supervision are present the increase in performance is both consistent and large, reliably getting a 2-5 point test F1 score gain over non-integrated methods.