Abstract:Modelling partial differential equations (PDEs) is of crucial importance in science and engineering, and it includes tasks ranging from forecasting to inverse problems, such as data assimilation. However, most previous numerical and machine learning approaches that target forecasting cannot be applied out-of-the-box for data assimilation. Recently, diffusion models have emerged as a powerful tool for conditional generation, being able to flexibly incorporate observations without retraining. In this work, we perform a comparative study of score-based diffusion models for forecasting and assimilation of sparse observations. In particular, we focus on diffusion models that are either trained in a conditional manner, or conditioned after unconditional training. We address the shortcomings of existing models by proposing 1) an autoregressive sampling approach that significantly improves performance in forecasting, 2) a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths, and 3) a hybrid model which employs flexible pre-training conditioning on initial conditions and flexible post-training conditioning to handle data assimilation. We empirically show that these modifications are crucial for successfully tackling the combination of forecasting and data assimilation, a task commonly encountered in real-world scenarios.
Abstract:Training generative models to sample from unnormalized density functions is an important and challenging task in machine learning. Traditional training methods often rely on the reverse Kullback-Leibler (KL) divergence due to its tractability. However, the mode-seeking behavior of reverse KL hinders effective approximation of multi-modal target distributions. To address this, we propose to minimize the reverse KL along diffusion trajectories of both model and target densities. We refer to this objective as the reverse diffusive KL divergence, which allows the model to capture multiple modes. Leveraging this objective, we train neural samplers that can efficiently generate samples from the target distribution in one step. We demonstrate that our method enhances sampling performance across various Boltzmann distributions, including both synthetic multi-modal densities and n-body particle systems.
Abstract:Batched Bayesian optimization (BO) can accelerate molecular design by efficiently identifying top-performing compounds from a large chemical library. Existing acquisition strategies for batch design in BO aim to balance exploration and exploitation. This often involves optimizing non-additive batch acquisition functions, necessitating approximation via myopic construction and/or diversity heuristics. In this work, we propose an acquisition strategy for discrete optimization that is motivated by pure exploitation, qPO (multipoint Probability of Optimality). qPO maximizes the probability that the batch includes the true optimum, which is expressible as the sum over individual acquisition scores and thereby circumvents the combinatorial challenge of optimizing a batch acquisition function. We differentiate the proposed strategy from parallel Thompson sampling and discuss how it implicitly captures diversity. Finally, we apply our method to the model-guided exploration of large chemical libraries and provide empirical evidence that it performs better than or on par with state-of-the-art methods in batched Bayesian optimization.
Abstract:Current methods for compressing neural network weights, such as decomposition, pruning, quantization, and channel simulation, often overlook the inherent symmetries within these networks and thus waste bits on encoding redundant information. In this paper, we propose a format based on bits-back coding for storing rotationally symmetric Transformer weights more efficiently than the usual array layout at the same floating-point precision. We evaluate our method on Large Language Models (LLMs) pruned by SliceGPT (Ashkboos et al., 2024) and achieve a 3-5% reduction in total bit usage for free across different model sizes and architectures without impacting model performance within a certain numerical precision.
Abstract:Multi-fidelity Bayesian Optimization (MFBO) is a promising framework to speed up materials and molecular discovery as sources of information of different accuracies are at hand at increasing cost. Despite its potential use in chemical tasks, there is a lack of systematic evaluation of the many parameters playing a role in MFBO. In this work, we provide guidelines and recommendations to decide when to use MFBO in experimental settings. We investigate MFBO methods applied to molecules and materials problems. First, we test two different families of acquisition functions in two synthetic problems and study the effect of the informativeness and cost of the approximate function. We use our implementation and guidelines to benchmark three real discovery problems and compare them against their single-fidelity counterparts. Our results may help guide future efforts to implement MFBO as a routine tool in the chemical sciences.
Abstract:Developing an efficient sampler capable of generating independent and identically distributed (IID) samples from a Boltzmann distribution is a crucial challenge in scientific research, e.g. molecular dynamics. In this work, we intend to learn neural samplers given energy functions instead of data sampled from the Boltzmann distribution. By learning the energies of the noised data, we propose a diffusion-based sampler, ENERGY-BASED DENOISING ENERGY MATCHING, which theoretically has lower variance and more complexity compared to related works. Furthermore, a novel bootstrapping technique is applied to EnDEM to balance between bias and variance. We evaluate EnDEM and BEnDEM on a 2-dimensional 40 Gaussian Mixture Model (GMM) and a 4-particle double-welling potential (DW-4). The experimental results demonstrate that BEnDEM can achieve state-of-the-art performance while being more robust.
Abstract:Diffusion models have shown promising potential for advancing Boltzmann Generators. However, two critical challenges persist: (1) inherent errors in samples due to model imperfections, and (2) the requirement of hundreds of functional evaluations (NFEs) to achieve high-quality samples. While existing solutions like importance sampling and distillation address these issues separately, they are often incompatible, as most distillation models lack the necessary density information for importance sampling. This paper introduces a novel sampling method that effectively combines Consistency Models (CMs) with importance sampling. We evaluate our approach on both synthetic energy functions and equivariant n-body particle systems. Our method produces unbiased samples using only 6-25 NFEs while achieving a comparable Effective Sample Size (ESS) to Denoising Diffusion Probabilistic Models (DDPMs) that require approximately 100 NFEs.
Abstract:Bayesian optimization (BO) is a principled approach to molecular design tasks. In this paper we explain three pitfalls of BO which can cause poor empirical performance: an incorrect prior width, over-smoothing, and inadequate acquisition function maximization. We show that with these issues addressed, even a basic BO setup is able to achieve the highest overall performance on the PMO benchmark for molecule design (Gao et al, 2022). These results suggest that BO may benefit from more attention in the machine learning for molecules community.
Abstract:Antibodies, crucial for immune defense, primarily rely on complementarity-determining regions (CDRs) to bind and neutralize antigens, such as viruses. The design of these CDRs determines the antibody's affinity and specificity towards its target. Generative models, particularly denoising diffusion probabilistic models (DDPMs), have shown potential to advance the structure-based design of CDR regions. However, only a limited dataset of bound antibody-antigen structures is available, and generalization to out-of-distribution interfaces remains a challenge. Physics based force-fields, which approximate atomic interactions, offer a coarse but universal source of information to better mold designs to target interfaces. Integrating this foundational information into diffusion models is, therefore, highly desirable. Here, we propose a novel approach to enhance the sampling process of diffusion models by integrating force field energy-based feedback. Our model, DiffForce, employs forces to guide the diffusion sampling process, effectively blending the two distributions. Through extensive experiments, we demonstrate that our method guides the model to sample CDRs with lower energy, enhancing both the structure and sequence of the generated antibodies.
Abstract:Scaling hyperparameter optimisation to very large datasets remains an open problem in the Gaussian process community. This paper focuses on iterative methods, which use linear system solvers, like conjugate gradients, alternating projections or stochastic gradient descent, to construct an estimate of the marginal likelihood gradient. We discuss three key improvements which are applicable across solvers: (i) a pathwise gradient estimator, which reduces the required number of solver iterations and amortises the computational cost of making predictions, (ii) warm starting linear system solvers with the solution from the previous step, which leads to faster solver convergence at the cost of negligible bias, (iii) early stopping linear system solvers after a limited computational budget, which synergises with warm starting, allowing solver progress to accumulate over multiple marginal likelihood steps. These techniques provide speed-ups of up to $72\times$ when solving to tolerance, and decrease the average residual norm by up to $7\times$ when stopping early.