Abstract:Open-Set Domain Generalization (OSDG) is a challenging task requiring models to accurately predict familiar categories while minimizing confidence for unknown categories to effectively reject them in unseen domains. While the OSDG field has seen considerable advancements, the impact of label noise--a common issue in real-world datasets--has been largely overlooked. Label noise can mislead model optimization, thereby exacerbating the challenges of open-set recognition in novel domains. In this study, we take the first step towards addressing Open-Set Domain Generalization under Noisy Labels (OSDG-NL) by constructing dedicated benchmarks derived from widely used OSDG datasets, including PACS and DigitsDG. We evaluate baseline approaches by integrating techniques from both label denoising and OSDG methodologies, highlighting the limitations of existing strategies in handling label noise effectively. To address these limitations, we propose HyProMeta, a novel framework that integrates hyperbolic category prototypes for label noise-aware meta-learning alongside a learnable new-category agnostic prompt designed to enhance generalization to unseen classes. Our extensive experiments demonstrate the superior performance of HyProMeta compared to state-of-the-art methods across the newly established benchmarks. The source code of this work is released at https://github.com/KPeng9510/HyProMeta.
Abstract:Exploring the intricate dynamics between muscular and skeletal structures is pivotal for understanding human motion. This domain presents substantial challenges, primarily attributed to the intensive resources required for acquiring ground truth muscle activation data, resulting in a scarcity of datasets. In this work, we address this issue by establishing Muscles in Time (MinT), a large-scale synthetic muscle activation dataset. For the creation of MinT, we enriched existing motion capture datasets by incorporating muscle activation simulations derived from biomechanical human body models using the OpenSim platform, a common approach in biomechanics and human motion research. Starting from simple pose sequences, our pipeline enables us to extract detailed information about the timing of muscle activations within the human musculoskeletal system. Muscles in Time contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle strands. We demonstrate the utility of this dataset by presenting results on neural network-based muscle activation estimation from human pose sequences with two different sequence-to-sequence architectures. Data and code are provided under https://simplexsigil.github.io/mint.
Abstract:In Open-Set Domain Generalization (OSDG), the model is exposed to both new variations of data appearance (domains) and open-set conditions, where both known and novel categories are present at test time. The challenges of this task arise from the dual need to generalize across diverse domains and accurately quantify category novelty, which is critical for applications in dynamic environments. Recently, meta-learning techniques have demonstrated superior results in OSDG, effectively orchestrating the meta-train and -test tasks by employing varied random categories and predefined domain partition strategies. These approaches prioritize a well-designed training schedule over traditional methods that focus primarily on data augmentation and the enhancement of discriminative feature learning. The prevailing meta-learning models in OSDG typically utilize a predefined sequential domain scheduler to structure data partitions. However, a crucial aspect that remains inadequately explored is the influence brought by strategies of domain schedulers during training. In this paper, we observe that an adaptive domain scheduler benefits more in OSDG compared with prefixed sequential and random domain schedulers. We propose the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS) to achieve an adaptive domain scheduler. This method strategically sequences domains by assessing their reliabilities in utilizing a follower network, trained with confidence scores learned in an evidential manner, regularized by max rebiasing discrepancy, and optimized in a bi-level manner. The results show that our method substantially improves OSDG performance and achieves more discriminative embeddings for both the seen and unseen categories. The source code will be available at https://github.com/KPeng9510/EBiL-HaDS.
Abstract:Foundation models (FMs) are large neural networks trained on broad datasets, excelling in downstream tasks with minimal fine-tuning. Human activity recognition in video has advanced with FMs, driven by competition among different architectures. However, high accuracies on standard benchmarks can draw an artificially rosy picture, as they often overlook real-world factors like changing camera perspectives. Popular benchmarks, mostly from YouTube or movies, offer diverse views but only coarse actions, which are insufficient for use-cases needing fine-grained, domain-specific actions. Domain-specific datasets (e.g., for industrial assembly) typically use data from limited static perspectives. This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition. We compare multiple backbone architectures and design choices, including image- and video- based models, and various strategies for temporal information fusion, including commonly used score averaging and more novel attention-based temporal aggregation mechanisms. This is the first systematic study of different foundation models and specific design choices for human activity recognition from unknown views, conducted with the goal to provide guidance for backbone- and temporal- fusion scheme selection. Code and models will be made publicly available to the community.
Abstract:Panoramic images can broaden the Field of View (FoV), occlusion-aware prediction can deepen the understanding of the scene, and domain adaptation can transfer across viewing domains. In this work, we introduce a novel task, Occlusion-Aware Seamless Segmentation (OASS), which simultaneously tackles all these three challenges. For benchmarking OASS, we establish a new human-annotated dataset for Blending Panoramic Amodal Seamless Segmentation, i.e., BlendPASS. Besides, we propose the first solution UnmaskFormer, aiming at unmasking the narrow FoV, occlusions, and domain gaps all at once. Specifically, UnmaskFormer includes the crucial designs of Unmasking Attention (UA) and Amodal-oriented Mix (AoMix). Our method achieves state-of-the-art performance on the BlendPASS dataset, reaching a remarkable mAPQ of 26.58% and mIoU of 43.66%. On public panoramic semantic segmentation datasets, i.e., SynPASS and DensePASS, our method outperforms previous methods and obtains 45.34% and 48.08% in mIoU, respectively. The fresh BlendPASS dataset and our source code will be made publicly available at https://github.com/yihong-97/OASS.
Abstract:Panoramic images, capturing a 360{\deg} field of view (FoV), encompass omnidirectional spatial information crucial for scene understanding. However, it is not only costly to obtain training-sufficient dense-annotated panoramas but also application-restricted when training models in a close-vocabulary setting. To tackle this problem, in this work, we define a new task termed Open Panoramic Segmentation (OPS), where models are trained with FoV-restricted pinhole images in the source domain in an open-vocabulary setting while evaluated with FoV-open panoramic images in the target domain, enabling the zero-shot open panoramic semantic segmentation ability of models. Moreover, we propose a model named OOOPS with a Deformable Adapter Network (DAN), which significantly improves zero-shot panoramic semantic segmentation performance. To further enhance the distortion-aware modeling ability from the pinhole source domain, we propose a novel data augmentation method called Random Equirectangular Projection (RERP) which is specifically designed to address object deformations in advance. Surpassing other state-of-the-art open-vocabulary semantic segmentation approaches, a remarkable performance boost on three panoramic datasets, WildPASS, Stanford2D3D, and Matterport3D, proves the effectiveness of our proposed OOOPS model with RERP on the OPS task, especially +2.2% on outdoor WildPASS and +2.4% mIoU on indoor Stanford2D3D. The code will be available at https://junweizheng93.github.io/publications/OPS/OPS.html.
Abstract:We introduce a new task called Referring Atomic Video Action Recognition (RAVAR), aimed at identifying atomic actions of a particular person based on a textual description and the video data of this person. This task differs from traditional action recognition and localization, where predictions are delivered for all present individuals. In contrast, we focus on recognizing the correct atomic action of a specific individual, guided by text. To explore this task, we present the RefAVA dataset, containing 36,630 instances with manually annotated textual descriptions of the individuals. To establish a strong initial benchmark, we implement and validate baselines from various domains, e.g., atomic action localization, video question answering, and text-video retrieval. Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person. The key ingredients are: (1) a multi-stream architecture that connects video, text, and a new location-semantic stream, and (2) cross-stream agent attention fusion and agent token fusion which amplify the most relevant information across these streams and consistently surpasses standard attention-based fusion on RAVAR. Extensive experiments demonstrate the effectiveness of RefAtomNet and its building blocks for recognizing the action of the described individual. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR.
Abstract:The current state of machine learning scholarship in Timeseries Anomaly Detection (TAD) is plagued by the persistent use of flawed evaluation metrics, inconsistent benchmarking practices, and a lack of proper justification for the choices made in novel deep learning-based model designs. Our paper presents a critical analysis of the status quo in TAD, revealing the misleading track of current research and highlighting problematic methods, and evaluation practices. Our position advocates for a shift in focus from solely pursuing novel model designs to improving benchmarking practices, creating non-trivial datasets, and critically evaluating the utility of complex methods against simpler baselines. Our findings demonstrate the need for rigorous evaluation protocols, the creation of simple baselines, and the revelation that state-of-the-art deep anomaly detection models effectively learn linear mappings. These findings suggest the need for more exploration and development of simple and interpretable TAD methods. The increment of model complexity in the state-of-the-art deep-learning based models unfortunately offers very little improvement. We offer insights and suggestions for the field to move forward. Code: https://github.com/ssarfraz/QuoVadisTAD
Abstract:The current state of machine learning scholarship in Timeseries Anomaly Detection (TAD) is plagued by the persistent use of flawed evaluation metrics, inconsistent benchmarking practices, and a lack of proper justification for the choices made in novel deep learning-based model designs. Our paper presents a critical analysis of the status quo in TAD, revealing the misleading track of current research and highlighting problematic methods, and evaluation practices. Our position advocates for a shift in focus from pursuing only the novelty in model design to improving benchmarking practices, creating non-trivial datasets, and placing renewed emphasis on studying the utility of model architectures for specific tasks. Our findings demonstrate the need for rigorous evaluation protocols, the creation of simple baselines, and the revelation that state-of-the-art deep anomaly detection models effectively learn linear mappings. These findings suggest the need for more exploration and development of simple and interpretable TAD methods. The increment of model complexity in the state-of-the-art deep-learning based models unfortunately offers very little improvement. We offer insights and suggestions for the field to move forward.
Abstract:Before developing a Document Layout Analysis (DLA) model in real-world applications, conducting comprehensive robustness testing is essential. However, the robustness of DLA models remains underexplored in the literature. To address this, we are the first to introduce a robustness benchmark for DLA models, which includes 450K document images of three datasets. To cover realistic corruptions, we propose a perturbation taxonomy with 36 common document perturbations inspired by real-world document processing. Additionally, to better understand document perturbation impacts, we propose two metrics, Mean Perturbation Effect (mPE) for perturbation assessment and Mean Robustness Degradation (mRD) for robustness evaluation. Furthermore, we introduce a self-titled model, i.e., Robust Document Layout Analyzer (RoDLA), which improves attention mechanisms to boost extraction of robust features. Experiments on the proposed benchmarks (PubLayNet-P, DocLayNet-P, and M$^6$Doc-P) demonstrate that RoDLA obtains state-of-the-art mRD scores of 115.7, 135.4, and 150.4, respectively. Compared to previous methods, RoDLA achieves notable improvements in mAP of +3.8%, +7.1% and +12.1%, respectively.