David
Abstract:Federated learning (FL) facilitates collaborative model training among multiple clients while preserving data privacy, often resulting in enhanced performance compared to models trained by individual clients. However, factors such as communication frequency and data distribution can contribute to feature drift, hindering the attainment of optimal training performance. This paper examine the relationship between model update drift and global as well as local optimizer from causal perspective. The influence of the global optimizer on feature drift primarily arises from the participation frequency of certain clients in server updates, whereas the effect of the local optimizer is typically associated with imbalanced data distributions.To mitigate this drift, we propose a novel framework termed Causal drift-Aware Federated lEarning (CAFE). CAFE exploits the causal relationship between feature-invariant components and classification outcomes to independently calibrate local client sample features and classifiers during the training phase. In the inference phase, it eliminated the drifts in the global model that favor frequently communicating clients.Experimental results demonstrate that CAFE's integration of feature calibration, parameter calibration, and historical information effectively reduces both drift towards majority classes and tendencies toward frequently communicating nodes.
Abstract:Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in large field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as wide fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack.
Abstract:Multimodal Sentiment Analysis (MSA) stands as a critical research frontier, seeking to comprehensively unravel human emotions by amalgamating text, audio, and visual data. Yet, discerning subtle emotional nuances within audio and video expressions poses a formidable challenge, particularly when emotional polarities across various segments appear similar. In this paper, our objective is to spotlight emotion-relevant attributes of audio and visual modalities to facilitate multimodal fusion in the context of nuanced emotional shifts in visual-audio scenarios. To this end, we introduce DEVA, a progressive fusion framework founded on textual sentiment descriptions aimed at accentuating emotional features of visual-audio content. DEVA employs an Emotional Description Generator (EDG) to transmute raw audio and visual data into textualized sentiment descriptions, thereby amplifying their emotional characteristics. These descriptions are then integrated with the source data to yield richer, enhanced features. Furthermore, DEVA incorporates the Text-guided Progressive Fusion Module (TPF), leveraging varying levels of text as a core modality guide. This module progressively fuses visual-audio minor modalities to alleviate disparities between text and visual-audio modalities. Experimental results on widely used sentiment analysis benchmark datasets, including MOSI, MOSEI, and CH-SIMS, underscore significant enhancements compared to state-of-the-art models. Moreover, fine-grained emotion experiments corroborate the robust sensitivity of DEVA to subtle emotional variations.
Abstract:Recent developments in Deep learning based Joint Source-Channel Coding (DeepJSCC) have demonstrated impressive capabilities within wireless semantic communications system. However, existing DeepJSCC methodologies exhibit limited generalization ability across varying channel conditions, necessitating the preparation of multiple models. Optimal performance is only attained when the channel status during testing aligns precisely with the training channel status, which is very inconvenient for real-life applications. In this paper, we introduce a novel DeepJSCC framework, termed Prompt JSCC (PJSCC), which incorporates a learnable prompt to implicitly integrate the physical channel state into the transmission system. Specifically, the Channel State Prompt (CSP) module is devised to generate prompts based on diverse SNR and channel distribution models. Through the interaction of latent image features with channel features derived from the CSP module, the DeepJSCC process dynamically adapts to varying channel conditions without necessitating retraining. Comparative analyses against leading DeepJSCC methodologies and traditional separate coding approaches reveal that the proposed PJSCC achieves optimal image reconstruction performance across different SNR settings and various channel models, as assessed by Peak Signal-to-Noise Ratio (PSNR) and Learning-based Perceptual Image Patch Similarity (LPIPS) metrics. Furthermore, in real-world scenarios, PJSCC shows excellent memory efficiency and scalability, rendering it readily deployable on resource-constrained platforms to facilitate semantic communications.
Abstract:Interpreting complex deep networks, notably pre-trained vision-language models (VLMs), is a formidable challenge. Current Class Activation Map (CAM) methods highlight regions revealing the model's decision-making basis but lack clear saliency maps and detailed interpretability. To bridge this gap, we propose DecomCAM, a novel decomposition-and-integration method that distills shared patterns from channel activation maps. Utilizing singular value decomposition, DecomCAM decomposes class-discriminative activation maps into orthogonal sub-saliency maps (OSSMs), which are then integrated together based on their contribution to the target concept. Extensive experiments on six benchmarks reveal that DecomCAM not only excels in locating accuracy but also achieves an optimizing balance between interpretability and computational efficiency. Further analysis unveils that OSSMs correlate with discernible object components, facilitating a granular understanding of the model's reasoning. This positions DecomCAM as a potential tool for fine-grained interpretation of advanced deep learning models. The code is avaible at https://github.com/CapricornGuang/DecomCAM.
Abstract:Big earth science data offers the scientific community great opportunities. Many more studies at large-scales, over long-terms and at high resolution can now be conducted using the rich information collected by remote sensing satellites, ground-based sensor networks, and even social media input. However, the hundreds of terabytes of information collected and compiled on an hourly basis by NASA and other government agencies present a significant challenge for atmospheric scientists seeking to improve the understanding of the Earth atmospheric system. These challenges include effective discovery, organization, analysis and visualization of large amounts of data. This paper reports the outcomes of an NSF-funded project that developed a geospatial cyberinfrastructure -- the A2CI (Atmospheric Analysis Cyberinfrastructure) -- to support atmospheric research. We first introduce the service-oriented system framework then describe in detail the implementation of the data discovery module, data management module, data integration module, data analysis and visualization modules following the cloud computing principles-Data-as-a-Service, Software-as-a-Service, Platform-as-a-Service and Infrastructure-as-a-Service. We demonstrate the graphic user interface by performing an analysis between Sea Surface Temperature and the intensity of tropical storms in the North Atlantic and Pacific oceans. We expect this work to contribute to the technical advancement of cyberinfrastructure research as well as to the development of an online, collaborative scientific analysis system for atmospheric science.
Abstract:By decoupling substrate resources, network virtualization (NV) is a promising solution for meeting diverse demands and ensuring differentiated quality of service (QoS). In particular, virtual network embedding (VNE) is a critical enabling technology that enhances the flexibility and scalability of network deployment by addressing the coupling of Internet processes and services. However, in the existing works, the black-box nature of deep neural networks (DNNs) limits the analysis, development, and improvement of systems. In recent times, interpretable deep learning (DL) represented by deep neuro-fuzzy systems (DNFS) combined with fuzzy inference has shown promising interpretability to further exploit the hidden value in the data. Motivated by this, we propose a DNFS-based VNE algorithm that aims to provide an interpretable NV scheme. Specifically, data-driven convolutional neural networks (CNNs) are used as fuzzy implication operators to compute the embedding probabilities of candidate substrate nodes through entailment operations. And, the identified fuzzy rule patterns are cached into the weights by forward computation and gradient back-propagation (BP). In addition, the fuzzy rule base is constructed based on Mamdani-type linguistic rules using linguistic labels. Finally, the effectiveness of evaluation indicators and fuzzy rules is verified by experiments.
Abstract:The emergence of cross-modal foundation models has introduced numerous approaches grounded in text-image retrieval. However, on some domain-specific retrieval tasks, these models fail to focus on the key attributes required. To address this issue, we propose a self-enhancement framework, A^{3}R, based on the CLIP-ViT/G-14, one of the largest cross-modal models. First, we perform an Attribute Augmentation strategy to enrich the textual description for fine-grained representation before model learning. Then, we propose an Adaption Re-ranking method to unify the representation space of textual query and candidate images and re-rank candidate images relying on the adapted query after model learning. The proposed framework is validated to achieve a salient improvement over the baseline and other teams' solutions in the cross-modal image retrieval track of the 1st foundation model challenge without introducing any additional samples. The code is available at \url{https://github.com/CapricornGuang/A3R}.
Abstract:Edge artificial intelligence (AI) has been a promising solution towards 6G to empower a series of advanced techniques such as digital twin, holographic projection, semantic communications, and auto-driving, for achieving intelligence of everything. The performance of edge AI tasks, including edge learning and edge AI inference, depends on the quality of three highly coupled processes, i.e., sensing for data acquisition, computation for information extraction, and communication for information transmission. However, these three modules need to compete for network resources for enhancing their own quality-of-services. To this end, integrated sensing-communication-computation (ISCC) is of paramount significance for improving resource utilization as well as achieving the customized goals of edge AI tasks. By investigating the interplay among the three modules, this article presents various kinds of ISCC schemes for federated edge learning tasks and edge AI inference tasks in both application and physical layers.
Abstract:Intelligent reflecting surfaces (IRS) have been proposed in millimeter wave (mmWave) and terahertz (THz) systems to achieve both coverage and capacity enhancement, where the design of hybrid precoders, combiners, and the IRS typically relies on channel state information. In this paper, we address the problem of uplink wideband channel estimation for IRS aided multiuser multiple-input single-output (MISO) systems with hybrid architectures. Combining the structure of model driven and data driven deep learning approaches, a hybrid driven learning architecture is devised for joint estimation and learning the properties of the channels. For a passive IRS aided system, we propose a residual learned approximate message passing as a model driven network. A denoising and attention network in the data driven network is used to jointly learn spatial and frequency features. Furthermore, we design a flexible hybrid driven network in a hybrid passive and active IRS aided system. Specifically, the depthwise separable convolution is applied to the data driven network, leading to less network complexity and fewer parameters at the IRS side. Numerical results indicate that in both systems, the proposed hybrid driven channel estimation methods significantly outperform existing deep learning-based schemes and effectively reduce the pilot overhead by about 60% in IRS aided systems.