DIE
Abstract:The rapid advancement of large language models (LLMs) has sparked widespread adoption across diverse applications, making robust evaluation frameworks crucial for assessing their performance. While conventional evaluation metrics remain applicable for shorter texts, their efficacy diminishes when evaluating the quality of long-form answers. This limitation is particularly critical in real-world scenarios involving extended questions, extensive context, and long-form answers, such as financial analysis or regulatory compliance. In this paper, we use a practical financial use case to illustrate applications that handle "long question-context-answer triplets". We construct a real-world financial dataset comprising long triplets and demonstrate the inadequacies of traditional metrics. To address this, we propose an effective Extract, Match, and Score (EMS) evaluation approach tailored to the complexities of long-form LLMs' outputs, providing practitioners with a reliable methodology for assessing LLMs' performance in complex real-world scenarios.
Abstract:Federated learning (FL) facilitates collaborative model training among multiple clients while preserving data privacy, often resulting in enhanced performance compared to models trained by individual clients. However, factors such as communication frequency and data distribution can contribute to feature drift, hindering the attainment of optimal training performance. This paper examine the relationship between model update drift and global as well as local optimizer from causal perspective. The influence of the global optimizer on feature drift primarily arises from the participation frequency of certain clients in server updates, whereas the effect of the local optimizer is typically associated with imbalanced data distributions.To mitigate this drift, we propose a novel framework termed Causal drift-Aware Federated lEarning (CAFE). CAFE exploits the causal relationship between feature-invariant components and classification outcomes to independently calibrate local client sample features and classifiers during the training phase. In the inference phase, it eliminated the drifts in the global model that favor frequently communicating clients.Experimental results demonstrate that CAFE's integration of feature calibration, parameter calibration, and historical information effectively reduces both drift towards majority classes and tendencies toward frequently communicating nodes.
Abstract:UAV swarms are widely used in emergency communications, area monitoring, and disaster relief. Coordinated by control centers, they are ideal for federated learning (FL) frameworks. However, current UAV-assisted FL methods primarily focus on single tasks, overlooking the need for multi-task training. In disaster relief scenarios, UAVs perform tasks such as crowd detection, road feasibility analysis, and disaster assessment, which exhibit time-varying demands and potential correlations. In order to meet the time-varying requirements of tasks and complete multiple tasks efficiently under resource constraints, in this paper, we propose a UAV swarm based multi-task FL framework, where ground emergency vehicles (EVs) collaborate with UAVs to accomplish multiple tasks efficiently under constrained energy and bandwidth resources. Through theoretical analysis, we identify key factors affecting task performance and introduce a task attention mechanism to dynamically evaluate task importance, thereby achieving efficient resource allocation. Additionally, we propose a task affinity (TA) metric to capture the dynamic correlation among tasks, thereby promoting task knowledge sharing to accelerate training and improve the generalization ability of the model in different scenarios. To optimize resource allocation, we formulate a two-layer optimization problem to jointly optimize UAV transmission power, computation frequency, bandwidth allocation, and UAV-EV associations. For the inner problem, we derive closed-form solutions for transmission power, computation frequency, and bandwidth allocation and apply a block coordinate descent method for optimization. For the outer problem, a two-stage algorithm is designed to determine optimal UAV-EV associations. Furthermore, theoretical analysis reveals a trade-off between UAV energy consumption and multi-task performance.
Abstract:The deployment of sensors for air quality monitoring is constrained by high costs, leading to inadequate network coverage and data deficits in some areas. Utilizing existing observations, spatio-temporal kriging is a method for estimating air quality at unobserved locations during a specific period. Inductive spatio-temporal kriging with increment training strategy has demonstrated its effectiveness using virtual nodes to simulate unobserved nodes. However, a disparity between virtual and real nodes persists, complicating the application of learning patterns derived from virtual nodes to actual unobserved ones. To address these limitations, this paper presents a Physics-Guided Increment Training Strategy (PGITS). Specifically, we design a dynamic graph generation module to incorporate the advection and diffusion processes of airborne particles as physical knowledge into the graph structure, dynamically adjusting the adjacency matrix to reflect physical interactions between nodes. By using physics principles as a bridge between virtual and real nodes, this strategy ensures the features of virtual nodes and their pseudo labels are closer to actual nodes. Consequently, the learned patterns of virtual nodes can be applied to actual unobserved nodes for effective kriging.
Abstract:Federated learning (FL) has become a crucial solution for distributed learning in edge intelligence, addressing communication constraints and privacy protection. However, challenges such as heterogeneous and asynchronous clients significantly impact model performance. This paper analyzes the harm of abnormal clients through parameter orthogonal decomposition innovatively and shows that the exit of abnormal clients can guarantee the effect of the model in most clients. To ensure the models' performance on exited abnormal clients and those who lack training resources, we also introduce a Federated Learning with Invariant Penalty for Generalization (FedIPG). With the assistance of the invariant penalty term, the model can achieve robust generalization capability. This approach indirectly mitigates the effects of data heterogeneity and asynchrony without additional communication overhead, making it ideal for edge intelligence systems. Our theoretical and empirical results demonstrate that FedIPG, combined with an exit strategy, enhances both in-distribution performance and out-of-distribution generalization capabilities while maintaining model convergence. This approach provides a robust framework for federated learning in resource-constrained environments while offering preliminary causal insights.
Abstract:Federated learning (FL) has provided a new methodology for coordinating a group of clients to train a machine learning model collaboratively, bringing an efficient paradigm in edge intelligence. Despite its promise, FL faces several critical challenges in practical applications involving edge devices, such as data heterogeneity and delays stemming from communication and computation constraints. This paper examines the impact of unknown causes of delay on training performance in an Asynchronous Federated Learning (AFL) system with data heterogeneity. Initially, an asynchronous error definition is proposed, based on which the solely adverse impact of data heterogeneity is theoretically analyzed within the traditional Synchronous Federated Learning (SFL) framework. Furthermore, Asynchronous Updates with Delayed Gradients (AUDG), a conventional AFL scheme, is discussed. Investigation into AUDG reveals that the negative influence of data heterogeneity is correlated with delays, while a shorter average delay from a specific client does not consistently enhance training performance. In order to compensate for the scenarios where AUDG are not adapted, Pseudo-synchronous Updates by Reusing Delayed Gradients (PSURDG) is proposed, and its theoretical convergence is analyzed. In both AUDG and PSURDG, only a random set of clients successfully transmits their updated results to the central server in each iteration. The critical difference between them lies in whether the delayed information is reused. Finally, both schemes are validated and compared through theoretical analysis and simulations, demonstrating more intuitively that discarding outdated information due to time delays is not always the best approach.
Abstract:Federated learning enables distributed model training across clients under central coordination without raw data exchange. However, in wireless implementations, frequent parameter updates between the server and clients create significant communication overhead. While existing research assumes known channel state information (CSI) or stationary distributions, practical wireless channels exhibit non-stationary characteristics due to channel fading, user mobility, and hostile attacks. The unavailability of CSI and time-varying statistics can cause unpredictable transmission failures, exacerbating client staleness and affecting model convergence. To address these challenges, we propose an asynchronous federated learning scheduling framework for non-stationary channel environments to reduce staleness while promoting fair and efficient communication and aggregation.We focus on two channel scenarios: extremely non-stationary and piecewise stationary. Age of Information (AoI) quantifies client staleness under non-stationary conditions. Through a rigorous convergence analysis, we explore how AoI and per-round client participation affect learning performance. The scheduling problem is modeled within a multi-armed bandit (MAB) framework, and we derive the theoretical lower bounds on AoI regret. Based on these findings, we develop scheduling strategies for both scenarios using the GLR-CUCB and M-exp3 algorithms, also deriving their respective upper bounds on AoI regret. To address imbalanced client updates, we introduce an adaptive allocation strategy that incorporates marginal utility and fairness. Simulations demonstrate that our algorithm reduces AoI regret growth, accelerates federated learning convergence, and promotes fairer aggregation.
Abstract:Graph neural networks have been widely used in recent recommender systems, where negative sampling plays an important role. Existing negative sampling methods restrict the relationship between nodes as either hard positive pairs or hard negative pairs. This leads to the loss of structural information, and lacks the mechanism to generate positive pairs for nodes with few neighbors. To overcome limitations, we propose a novel soft link-based sampling method, namely MixDec Sampling, which consists of Mixup Sampling module and Decay Sampling module. The Mixup Sampling augments node features by synthesizing new nodes and soft links, which provides sufficient number of samples for nodes with few neighbors. The Decay Sampling strengthens the digestion of graph structure information by generating soft links for node embedding learning. To the best of our knowledge, we are the first to model sampling relationships between nodes by soft links in GNN-based recommender systems. Extensive experiments demonstrate that the proposed MixDec Sampling can significantly and consistently improve the recommendation performance of several representative GNN-based models on various recommendation benchmarks.
Abstract:It is challenging to convert natural language (NL) questions into executable structured query language (SQL) queries for text-to-SQL tasks due to the vast number of database schemas with redundancy, which interferes with semantic learning, and the domain shift between NL and SQL. Existing works for schema linking focus on the table level and perform it once, ignoring the multi-granularity semantics and chainable cyclicity of schemas. In this paper, we propose a progressive schema linking with multi-granularity semantics (PSM-SQL) framework to reduce the redundant database schemas for text-to-SQL. Using the multi-granularity schema linking (MSL) module, PSM-SQL learns the schema semantics at the column, table, and database levels. More specifically, a triplet loss is used at the column level to learn embeddings, while fine-tuning LLMs is employed at the database level for schema reasoning. MSL employs classifier and similarity scores to model schema interactions for schema linking at the table level. In particular, PSM-SQL adopts a chain loop strategy to reduce the task difficulty of schema linking by continuously reducing the number of redundant schemas. Experiments conducted on text-to-SQL datasets show that the proposed PSM-SQL is 1-3 percentage points higher than the existing methods.
Abstract:Wide-angle video is favored for its wide viewing angle and ability to capture a large area of scenery, making it an ideal choice for sports and adventure recording. However, wide-angle video is prone to deformation, exposure and other distortions, resulting in poor video quality and affecting the perception and experience, which may seriously hinder its application in fields such as competitive sports. Up to now, few explorations focus on the quality assessment issue of wide-angle video. This deficiency primarily stems from the absence of a specialized dataset for wide-angle videos. To bridge this gap, we construct the first Multi-annotated and multi-modal Wide-angle Video quality assessment (MWV) dataset. Then, the performances of state-of-the-art video quality methods on the MWV dataset are investigated by inter-dataset testing and intra-dataset testing. Experimental results show that these methods impose significant limitations on their applicability.