Abstract:The rapid development of Unmanned aerial vehicles (UAVs) technology has spawned a wide variety of applications, such as emergency communications, regional surveillance, and disaster relief. Due to their limited battery capacity and processing power, multiple UAVs are often required for complex tasks. In such cases, a control center is crucial for coordinating their activities, which fits well with the federated learning (FL) framework. However, conventional FL approaches often focus on a single task, ignoring the potential of training multiple related tasks simultaneously. In this paper, we propose a UAV-assisted multi-task federated learning scheme, in which data collected by multiple UAVs can be used to train multiple related tasks concurrently. The scheme facilitates the training process by sharing feature extractors across related tasks and introduces a task attention mechanism to balance task performance and encourage knowledge sharing. To provide an analytical description of training performance, the convergence analysis of the proposed scheme is performed. Additionally, the optimal bandwidth allocation for UAVs under limited bandwidth conditions is derived to minimize communication time. Meanwhile, a UAV-EV association strategy based on coalition formation game is proposed. Simulation results validate the effectiveness of the proposed scheme in enhancing multi-task performance and training speed.
Abstract:The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different ansatze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range. The variational optimization consistently leads to lower ground-state energies than previous best results. Transition into a Wigner crystal (WC) phase occurs automatically at rs = 37 +/- 1, a density lower than currently believed. Between the liquid and WC phases, the same ansatz and variational search strongly suggest the existence of intermediate states in a broad range of densities, with enhanced short-range nematic spin correlations.