Abstract:Federated learning enables distributed model training across clients under central coordination without raw data exchange. However, in wireless implementations, frequent parameter updates between the server and clients create significant communication overhead. While existing research assumes known channel state information (CSI) or stationary distributions, practical wireless channels exhibit non-stationary characteristics due to channel fading, user mobility, and hostile attacks. The unavailability of CSI and time-varying statistics can cause unpredictable transmission failures, exacerbating client staleness and affecting model convergence. To address these challenges, we propose an asynchronous federated learning scheduling framework for non-stationary channel environments to reduce staleness while promoting fair and efficient communication and aggregation.We focus on two channel scenarios: extremely non-stationary and piecewise stationary. Age of Information (AoI) quantifies client staleness under non-stationary conditions. Through a rigorous convergence analysis, we explore how AoI and per-round client participation affect learning performance. The scheduling problem is modeled within a multi-armed bandit (MAB) framework, and we derive the theoretical lower bounds on AoI regret. Based on these findings, we develop scheduling strategies for both scenarios using the GLR-CUCB and M-exp3 algorithms, also deriving their respective upper bounds on AoI regret. To address imbalanced client updates, we introduce an adaptive allocation strategy that incorporates marginal utility and fairness. Simulations demonstrate that our algorithm reduces AoI regret growth, accelerates federated learning convergence, and promotes fairer aggregation.