Abstract:Federated learning (FL) has become a crucial solution for distributed learning in edge intelligence, addressing communication constraints and privacy protection. However, challenges such as heterogeneous and asynchronous clients significantly impact model performance. This paper analyzes the harm of abnormal clients through parameter orthogonal decomposition innovatively and shows that the exit of abnormal clients can guarantee the effect of the model in most clients. To ensure the models' performance on exited abnormal clients and those who lack training resources, we also introduce a Federated Learning with Invariant Penalty for Generalization (FedIPG). With the assistance of the invariant penalty term, the model can achieve robust generalization capability. This approach indirectly mitigates the effects of data heterogeneity and asynchrony without additional communication overhead, making it ideal for edge intelligence systems. Our theoretical and empirical results demonstrate that FedIPG, combined with an exit strategy, enhances both in-distribution performance and out-of-distribution generalization capabilities while maintaining model convergence. This approach provides a robust framework for federated learning in resource-constrained environments while offering preliminary causal insights.
Abstract:Federated learning (FL) has provided a new methodology for coordinating a group of clients to train a machine learning model collaboratively, bringing an efficient paradigm in edge intelligence. Despite its promise, FL faces several critical challenges in practical applications involving edge devices, such as data heterogeneity and delays stemming from communication and computation constraints. This paper examines the impact of unknown causes of delay on training performance in an Asynchronous Federated Learning (AFL) system with data heterogeneity. Initially, an asynchronous error definition is proposed, based on which the solely adverse impact of data heterogeneity is theoretically analyzed within the traditional Synchronous Federated Learning (SFL) framework. Furthermore, Asynchronous Updates with Delayed Gradients (AUDG), a conventional AFL scheme, is discussed. Investigation into AUDG reveals that the negative influence of data heterogeneity is correlated with delays, while a shorter average delay from a specific client does not consistently enhance training performance. In order to compensate for the scenarios where AUDG are not adapted, Pseudo-synchronous Updates by Reusing Delayed Gradients (PSURDG) is proposed, and its theoretical convergence is analyzed. In both AUDG and PSURDG, only a random set of clients successfully transmits their updated results to the central server in each iteration. The critical difference between them lies in whether the delayed information is reused. Finally, both schemes are validated and compared through theoretical analysis and simulations, demonstrating more intuitively that discarding outdated information due to time delays is not always the best approach.