Abstract:The Information Bottleneck (IB) principle has emerged as a promising approach for enhancing the generalization, robustness, and interpretability of deep neural networks, demonstrating efficacy across image segmentation, document clustering, and semantic communication. Among IB implementations, the IB Lagrangian method, employing Lagrangian multipliers, is widely adopted. While numerous methods for the optimizations of IB Lagrangian based on variational bounds and neural estimators are feasible, their performance is highly dependent on the quality of their design, which is inherently prone to errors. To address this limitation, we introduce Structured IB, a framework for investigating potential structured features. By incorporating auxiliary encoders to extract missing informative features, we generate more informative representations. Our experiments demonstrate superior prediction accuracy and task-relevant information preservation compared to the original IB Lagrangian method, even with reduced network size.
Abstract:Facial action unit (AU) detection remains a challenging task, due to the subtlety, dynamics, and diversity of AUs. Recently, the prevailing techniques of self-attention and causal inference have been introduced to AU detection. However, most existing methods directly learn self-attention guided by AU detection, or employ common patterns for all AUs during causal intervention. The former often captures irrelevant information in a global range, and the latter ignores the specific causal characteristic of each AU. In this paper, we propose a novel AU detection framework called AC2D by adaptively constraining self-attention weight distribution and causally deconfounding the sample confounder. Specifically, we explore the mechanism of self-attention weight distribution, in which the self-attention weight distribution of each AU is regarded as spatial distribution and is adaptively learned under the constraint of location-predefined attention and the guidance of AU detection. Moreover, we propose a causal intervention module for each AU, in which the bias caused by training samples and the interference from irrelevant AUs are both suppressed. Extensive experiments show that our method achieves competitive performance compared to state-of-the-art AU detection approaches on challenging benchmarks, including BP4D, DISFA, GFT, and BP4D+ in constrained scenarios and Aff-Wild2 in unconstrained scenarios. The code is available at https://github.com/ZhiwenShao/AC2D.
Abstract:Oriented object detection in remote sensing images is a challenging task due to objects being distributed in multi-orientation. Recently, end-to-end transformer-based methods have achieved success by eliminating the need for post-processing operators compared to traditional CNN-based methods. However, directly extending transformers to oriented object detection presents three main issues: 1) objects rotate arbitrarily, necessitating the encoding of angles along with position and size; 2) the geometric relations of oriented objects are lacking in self-attention, due to the absence of interaction between content and positional queries; and 3) oriented objects cause misalignment, mainly between values and positional queries in cross-attention, making accurate classification and localization difficult. In this paper, we propose an end-to-end transformer-based oriented object detector, consisting of three dedicated modules to address these issues. First, Gaussian positional encoding is proposed to encode the angle, position, and size of oriented boxes using Gaussian distributions. Second, Wasserstein self-attention is proposed to introduce geometric relations and facilitate interaction between content and positional queries by utilizing Gaussian Wasserstein distance scores. Third, oriented cross-attention is proposed to align values and positional queries by rotating sampling points around the positional query according to their angles. Experiments on six datasets DIOR-R, a series of DOTA, HRSC2016 and ICDAR2015 show the effectiveness of our approach. Compared with previous end-to-end detectors, the OrientedFormer gains 1.16 and 1.21 AP$_{50}$ on DIOR-R and DOTA-v1.0 respectively, while reducing training epochs from 3$\times$ to 1$\times$. The codes are available at https://github.com/wokaikaixinxin/OrientedFormer.
Abstract:Space-ground integrated networks hold great promise for providing global connectivity, particularly in remote areas where large amounts of valuable data are generated by Internet of Things (IoT) devices, but lacking terrestrial communication infrastructure. The massive data is conventionally transferred to the cloud server for centralized artificial intelligence (AI) models training, raising huge communication overhead and privacy concerns. To address this, we propose a hierarchical learning and computing framework, which leverages the lowlatency characteristic of low-earth-orbit (LEO) satellites and the global coverage of geostationary-earth-orbit (GEO) satellites, to provide global aggregation services for locally trained models on ground IoT devices. Due to the time-varying nature of satellite network topology and the energy constraints of LEO satellites, efficiently aggregating the received local models from ground devices on LEO satellites is highly challenging. By leveraging the predictability of inter-satellite connectivity, modeling the space network as a directed graph, we formulate a network energy minimization problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem. We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph. Extensive simulations under realworld space-ground integrated network settings demonstrate that the proposed TAEER algorithm significantly reduces energy consumption and outperforms benchmarks.
Abstract:The forthcoming generation of wireless technology, 6G, promises a revolutionary leap beyond traditional data-centric services. It aims to usher in an era of ubiquitous intelligent services, where everything is interconnected and intelligent. This vision requires the seamless integration of three fundamental modules: Sensing for information acquisition, communication for information sharing, and computation for information processing and decision-making. These modules are intricately linked, especially in complex tasks such as edge learning and inference. However, the performance of these modules is interdependent, creating a resource competition for time, energy, and bandwidth. Existing techniques like integrated communication and computation (ICC), integrated sensing and computation (ISC), and integrated sensing and communication (ISAC) have made partial strides in addressing this challenge, but they fall short of meeting the extreme performance requirements. To overcome these limitations, it is essential to develop new techniques that comprehensively integrate sensing, communication, and computation. This integrated approach, known as Integrated Sensing, Communication, and Computation (ISCC), offers a systematic perspective for enhancing task performance. This paper begins with a comprehensive survey of historic and related techniques such as ICC, ISC, and ISAC, highlighting their strengths and limitations. It then explores the state-of-the-art signal designs for ISCC, along with network resource management strategies specifically tailored for ISCC. Furthermore, this paper discusses the exciting research opportunities that lie ahead for implementing ISCC in future advanced networks. By embracing ISCC, we can unlock the full potential of intelligent connectivity, paving the way for groundbreaking applications and services.
Abstract:With the development of deep learning, many different network architectures have been explored in speaker verification. However, most network architectures rely on a single deep learning architecture, and hybrid networks combining different architectures have been little studied in ASV tasks. In this paper, we propose the GMM-ResNext model for speaker verification. Conventional GMM does not consider the score distribution of each frame feature over all Gaussian components and ignores the relationship between neighboring speech frames. So, we extract the log Gaussian probability features based on the raw acoustic features and use ResNext-based network as the backbone to extract the speaker embedding. GMM-ResNext combines Generative and Discriminative Models to improve the generalization ability of deep learning models and allows one to more easily specify meaningful priors on model parameters. A two-path GMM-ResNext model based on two gender-related GMMs has also been proposed. The Experimental results show that the proposed GMM-ResNext achieves relative improvements of 48.1\% and 11.3\% in EER compared with ResNet34 and ECAPA-TDNN on VoxCeleb1-O test set.
Abstract:Deep learning models are widely used for speaker recognition and spoofing speech detection. We propose the GMM-ResNet2 for synthesis speech detection. Compared with the previous GMM-ResNet model, GMM-ResNet2 has four improvements. Firstly, the different order GMMs have different capabilities to form smooth approximations to the feature distribution, and multiple GMMs are used to extract multi-scale Log Gaussian Probability features. Secondly, the grouping technique is used to improve the classification accuracy by exposing the group cardinality while reducing both the number of parameters and the training time. The final score is obtained by ensemble of all group classifier outputs using the averaging method. Thirdly, the residual block is improved by including one activation function and one batch normalization layer. Finally, an ensemble-aware loss function is proposed to integrate the independent loss functions of all ensemble members. On the ASVspoof 2019 LA task, the GMM-ResNet2 achieves a minimum t-DCF of 0.0227 and an EER of 0.79\%. On the ASVspoof 2021 LA task, the GMM-ResNet2 achieves a minimum t-DCF of 0.2362 and an EER of 2.19\%, and represents a relative reductions of 31.4\% and 76.3\% compared with the LFCC-LCNN baseline.
Abstract:The proliferation of low-earth-orbit (LEO) satellite networks leads to the generation of vast volumes of remote sensing data which is traditionally transferred to the ground server for centralized processing, raising privacy and bandwidth concerns. Federated edge learning (FEEL), as a distributed machine learning approach, has the potential to address these challenges by sharing only model parameters instead of raw data. Although promising, the dynamics of LEO networks, characterized by the high mobility of satellites and short ground-to-satellite link (GSL) duration, pose unique challenges for FEEL. Notably, frequent model transmission between the satellites and ground incurs prolonged waiting time and large transmission latency. This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to LEO mega-constellation networks. By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL. Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation, which enhances transmission efficiency. Theoretical convergence analysis is provided to characterize the algorithm performance. Extensive simulations show that our FEDMEGA algorithm outperforms existing satellite FEEL algorithms, exhibiting an approximate 30% improvement in convergence rate.
Abstract:Long-tailed data is prevalent in real-world classification tasks and heavily relies on supervised information, which makes the annotation process exceptionally labor-intensive and time-consuming. Unfortunately, despite being a common approach to mitigate labeling costs, existing weakly supervised learning methods struggle to adequately preserve supervised information for tail samples, resulting in a decline in accuracy for the tail classes. To alleviate this problem, we introduce a novel weakly supervised labeling setting called Reduced Label. The proposed labeling setting not only avoids the decline of supervised information for the tail samples, but also decreases the labeling costs associated with long-tailed data. Additionally, we propose an straightforward and highly efficient unbiased framework with strong theoretical guarantees to learn from these Reduced Labels. Extensive experiments conducted on benchmark datasets including ImageNet validate the effectiveness of our approach, surpassing the performance of state-of-the-art weakly supervised methods.
Abstract:In multi-label classification, each training instance is associated with multiple class labels simultaneously. Unfortunately, collecting the fully precise class labels for each training instance is time- and labor-consuming for real-world applications. To alleviate this problem, a novel labeling setting termed \textit{Determined Multi-Label Learning} (DMLL) is proposed, aiming to effectively alleviate the labeling cost inherent in multi-label tasks. In this novel labeling setting, each training instance is associated with a \textit{determined label} (either "Yes" or "No"), which indicates whether the training instance contains the provided class label. The provided class label is randomly and uniformly selected from the whole candidate labels set. Besides, each training instance only need to be determined once, which significantly reduce the annotation cost of the labeling task for multi-label datasets. In this paper, we theoretically derive an risk-consistent estimator to learn a multi-label classifier from these determined-labeled training data. Additionally, we introduce a similarity-based prompt learning method for the first time, which minimizes the risk-consistent loss of large-scale pre-trained models to learn a supplemental prompt with richer semantic information. Extensive experimental validation underscores the efficacy of our approach, demonstrating superior performance compared to existing state-of-the-art methods.