Abstract:Sensing and edge artificial intelligence (AI) are envisioned as two essential and interconnected functions in sixth-generation (6G) mobile networks. On the one hand, sensing-empowered applications rely on powerful AI models to extract features and understand semantics from ubiquitous wireless sensors. On the other hand, the massive amount of sensory data serves as the fuel to continuously refine edge AI models. This deep integration of sensing and edge AI has given rise to a new task-oriented paradigm known as integrated sensing and edge AI (ISEA), which features a holistic design approach to communication, AI computation, and sensing for optimal sensing-task performance. In this article, we present a comprehensive survey for ISEA. We first provide technical preliminaries for sensing, edge AI, and new communication paradigms in ISEA. Then, we study several use cases of ISEA to demonstrate its practical relevance and introduce current standardization and industrial progress. Next, the design principles, metrics, tradeoffs, and architectures of ISEA are established, followed by a thorough overview of ISEA techniques, including digital air interface, over-the-air computation, and advanced signal processing. Its interplay with various 6G advancements, e.g., new physical-layer and networking techniques, are presented. Finally, we present future research opportunities in ISEA, including the integration of foundation models, convergence of ISEA and integrated sensing and communications (ISAC), and ultra-low-latency ISEA.
Abstract:Rare events, despite their infrequency, often carry critical information and require immediate attentions in mission-critical applications such as autonomous driving, healthcare, and industrial automation. The data-intensive nature of these tasks and their need for prompt responses, combined with designing edge AI (or edge inference), pose significant challenges in systems and techniques. Existing edge inference approaches often suffer from communication bottlenecks due to high-dimensional data transmission and fail to provide timely responses to rare events, limiting their effectiveness for mission-critical applications in the sixth-generation (6G) mobile networks. To overcome these challenges, we propose a channel-adaptive, event-triggered edge-inference framework that prioritizes efficient rare-event processing. Central to this framework is a dual-threshold, multi-exit architecture, which enables early local inference for rare events detected locally while offloading more complex rare events to edge servers for detailed classification. To further enhance the system's performance, we developed a channel-adaptive offloading policy paired with an online algorithm to dynamically determine the optimal confidence thresholds for controlling offloading decisions. The associated optimization problem is solved by reformulating the original non-convex function into an equivalent strongly convex one. Using deep neural network classifiers and real medical datasets, our experiments demonstrate that the proposed framework not only achieves superior rare-event classification accuracy, but also effectively reduces communication overhead, as opposed to existing edge-inference approaches.
Abstract:Federated Dropout is an efficient technique to overcome both communication and computation bottlenecks for deploying federated learning at the network edge. In each training round, an edge device only needs to update and transmit a sub-model, which is generated by the typical method of dropout in deep learning, and thus effectively reduces the per-round latency. \textcolor{blue}{However, the theoretical convergence analysis for Federated Dropout is still lacking in the literature, particularly regarding the quantitative influence of dropout rate on convergence}. To address this issue, by using the Taylor expansion method, we mathematically show that the gradient variance increases with a scaling factor of $\gamma/(1-\gamma)$, with $\gamma \in [0, \theta)$ denoting the dropout rate and $\theta$ being the maximum dropout rate ensuring the loss function reduction. Based on the above approximation, we provide the convergence analysis for Federated Dropout. Specifically, it is shown that a larger dropout rate of each device leads to a slower convergence rate. This provides a theoretical foundation for reducing the convergence latency by making a tradeoff between the per-round latency and the overall rounds till convergence. Moreover, a low-complexity algorithm is proposed to jointly optimize the dropout rate and the bandwidth allocation for minimizing the loss function in all rounds under a given per-round latency and limited network resources. Finally, numerical results are provided to verify the effectiveness of the proposed algorithm.
Abstract:To bridge the digital divide, the space-ground integrated networks (SGINs), which will be a key component of the six-generation (6G) mobile networks, are expected to deliver artificial intelligence (AI) services to every corner of the world. One mission of SGINs is to support federated learning (FL) at a global scale. However, existing space-ground integrated FL frameworks involve ground stations or costly inter-satellite links, entailing excessive training latency and communication costs. To overcome these limitations, we propose an infrastructure-free federated learning framework based on a model dispersal (FedMeld) strategy, which exploits periodic movement patterns and store-carry-forward capabilities of satellites to enable parameter mixing across large-scale geographical regions. We theoretically show that FedMeld leads to global model convergence and quantify the effects of round interval and mixing ratio between adjacent areas on its learning performance. Based on the theoretical results, we formulate a joint optimization problem to design the staleness control and mixing ratio (SC-MR) for minimizing the training loss. By decomposing the problem into sequential SC and MR subproblems without compromising the optimality, we derive the round interval solution in a closed form and the mixing ratio in a semi-closed form to achieve the \textit{optimal} latency-accuracy tradeoff. Experiments using various datasets demonstrate that FedMeld achieves superior model accuracy while significantly reducing communication costs as compared with traditional FL schemes for SGINs.
Abstract:Federated learning (FL) has emerged as a widely adopted paradigm for enabling edge learning with distributed data while ensuring data privacy. However, the traditional FL with deep neural networks trained via backpropagation can hardly meet the low-latency learning requirements in the sixth generation (6G) mobile networks. This challenge mainly arises from the high-dimensional model parameters to be transmitted and the numerous rounds of communication required for convergence due to the inherent randomness of the training process. To address this issue, we adopt the state-of-the-art principle of maximal coding rate reduction to learn linear discriminative features and extend the resultant white-box neural network into FL, yielding the novel framework of Low-Latency Federated Learning (LoLaFL) via forward-only propagation. LoLaFL enables layer-wise transmissions and aggregation with significantly fewer communication rounds, thereby considerably reducing latency. Additionally, we propose two \emph{nonlinear} aggregation schemes for LoLaFL. The first scheme is based on the proof that the optimal NN parameter aggregation in LoLaFL should be harmonic-mean-like. The second scheme further exploits the low-rank structures of the features and transmits the low-rank-approximated covariance matrices of features to achieve additional latency reduction. Theoretic analysis and experiments are conducted to evaluate the performance of LoLaFL. In comparison with traditional FL, the two nonlinear aggregation schemes for LoLaFL can achieve reductions in latency of over 91\% and 98\%, respectively, while maintaining comparable accuracies.
Abstract:The advancement of Rydberg Atomic REceiver (RARE) is driving a paradigm shift in electromagnetic (EM) wave measurement. RAREs utilize the electron transition phenomenon of highly-excited atoms to interact with EM waves, thereby enabling wireless signal detection. Operating at the quantum scale, such new receivers have the potential to breakthrough the sensitivity limit of classical receivers, sparking a revolution in physical-layer wireless communications. The objective of this paper is to offer insights into RARE-aided communication systems. We first provide a comprehensive introduction to the fundamental principles of RAREs. Then, a thorough comparison between RAREs and classical receivers is conducted in terms of the antenna size, sensitivity, coverage, and bandwidth. Subsequently, we overview the state-of-the-art design in RARE-aided wireless communications, exploring the latest progresses in frequency-division multiplexing, multiple-input-multiple-output, wireless sensing, and quantum many-body techniques. Finally, we highlight several wireless-communication related open problems as important research directions.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, leading to their increasing deployment in wireless networks for a wide variety of user services. However, the growing longer prompt setting highlights the crucial issue of computational resource demands and huge communication load. To address this challenge, we propose Joint Power and Prompt Optimization (JPPO), a framework that combines Small Language Model (SLM)-based prompt compression with wireless power allocation optimization. By deploying SLM at user devices for prompt compression and employing Deep Reinforcement Learning for joint optimization of compression ratio and transmission power, JPPO effectively balances service quality with resource efficiency. Experimental results demonstrate that our framework achieves high service fidelity and low bit error rates while optimizing power usage in wireless LLM services. The system reduces response time by about 17%, with the improvement varying based on the length of the original prompt.
Abstract:Integrated sensing and communication (ISAC) unifies wireless communication and sensing by sharing spectrum and hardware, which often incurs trade-offs between two functions due to limited resources. However, this paper shifts focus to exploring the synergy between communication and sensing, using WiFi sensing as an exemplary scenario where communication signals are repurposed to probe the environment without dedicated sensing waveforms, followed by data uploading to the edge server for inference. While increased device participation enhances multi-view sensing data, it also imposes significant communication overhead between devices and the edge server. To address this challenge, we aim to maximize the sensing task performance, measured by mutual information, under the channel capacity constraint. The information-theoretic optimization problem is solved by the proposed ADE-MI, a novel framework that employs a two-stage optimization two-stage optimization approach: (1) adaptive distributed encoding (ADE) at the device, which ensures transmitted bits are most relevant to sensing tasks, and (2) multi-view Inference (MI) at the edge server, which orchestrates multi-view data from distributed devices. Our experimental results highlight the synergy between communication and sensing, showing that more frequent communication from WiFi access points to edge devices improves sensing inference accuracy. The proposed ADE-MI achieves 92\% recognition accuracy with over $10^4$-fold reduction in latency compared to schemes with raw data communication, achieving both high sensing inference accuracy and low communication latency simultaneously.
Abstract:The development of sixth-generation (6G) wireless communication systems demands innovative solutions to address challenges in the deployment of a large number of base stations and the detection of multi-band signals. Quantum technology, specifically nitrogen vacancy (NV) centers in diamonds, offers promising potential for the development of compact, robust receivers capable of supporting multiple users. For the first time, we propose a multiple access scheme using fluorescent nanodiamonds (FNDs) containing NV centers as nano-antennas. The unique response of each FND to applied microwaves allows for distinguishable patterns of fluorescence intensities, enabling multi-user signal demodulation. We demonstrate the effectiveness of our FNDs-implemented receiver by simultaneously transmitting two uncoded digitally modulated information bit streams from two separate transmitters, achieving a low bit error ratio. Moreover, our design supports tunable frequency band communication and reference-free signal decoupling, reducing communication overhead. Furthermore, we implement a miniaturized device comprising all essential components, highlighting its practicality as a receiver serving multiple users simultaneously. This approach paves the way for the integration of quantum sensing technologies in future 6G wireless communication networks.
Abstract:Leveraging the strong atom-light interaction, Rydberg atomic receivers significantly enhance the sensitivity of electromagnetic signal measurements, outperforming traditional antennas. Existing research primarily focuses on improving the architecture and signal detection algorithms of atomic receivers, while established signal processing schemes at the transmitter end have remained constant. However, these schemes fail to maximize the throughput of atomic receivers due to the nonlinearity of transmission model. To address this issue, we propose to design transmitter precoding in multiple-input multiple-output systems to achieve the capacity of atomic receivers. Initially, we harness a strong reference approximation to convert the nonlinear magnitude-detection model of atomic receivers into a linear real-part detector. Based on this approximation, we prove that the degree of freedom is min{Nr/2,Nt} for a MIMO system comprising an Nr-antenna atomic receiver and an Nt-antenna classic transmitter. To achieve the system capacity, we propose an IQ-aware fully digital precoding method. Unlike traditional complex-valued digital precoders that jointly manipulate the inphase and quadrature (IQ) symbols, our method employs four real matrices to independently precode the IQ baseband symbols, which is shown to be optimal for atomic receivers. Then, to eliminate the reliance on fully digital precoding architecture, we further explore IQ-aware hybrid precoding techniques. Our design incorporates a low-dimensional IQ-aware digital precoder and a high-dimensional complex analog precoder. Alternating minimization algorithms are proposed to produce IQ-aware hybrid precoders, with the objective of approaching the optimal IQ-aware fully digital precoder. Simulation results validate the superiority of proposed IQ-aware precoding methods over existing techniques in atomic MIMO communications.