Abstract:The advancement of Rydberg Atomic REceiver (RARE) is driving a paradigm shift in electromagnetic (EM) wave measurement. RAREs utilize the electron transition phenomenon of highly-excited atoms to interact with EM waves, thereby enabling wireless signal detection. Operating at the quantum scale, such new receivers have the potential to breakthrough the sensitivity limit of classical receivers, sparking a revolution in physical-layer wireless communications. The objective of this paper is to offer insights into RARE-aided communication systems. We first provide a comprehensive introduction to the fundamental principles of RAREs. Then, a thorough comparison between RAREs and classical receivers is conducted in terms of the antenna size, sensitivity, coverage, and bandwidth. Subsequently, we overview the state-of-the-art design in RARE-aided wireless communications, exploring the latest progresses in frequency-division multiplexing, multiple-input-multiple-output, wireless sensing, and quantum many-body techniques. Finally, we highlight several wireless-communication related open problems as important research directions.
Abstract:The development of sixth-generation (6G) wireless communication systems demands innovative solutions to address challenges in the deployment of a large number of base stations and the detection of multi-band signals. Quantum technology, specifically nitrogen vacancy (NV) centers in diamonds, offers promising potential for the development of compact, robust receivers capable of supporting multiple users. For the first time, we propose a multiple access scheme using fluorescent nanodiamonds (FNDs) containing NV centers as nano-antennas. The unique response of each FND to applied microwaves allows for distinguishable patterns of fluorescence intensities, enabling multi-user signal demodulation. We demonstrate the effectiveness of our FNDs-implemented receiver by simultaneously transmitting two uncoded digitally modulated information bit streams from two separate transmitters, achieving a low bit error ratio. Moreover, our design supports tunable frequency band communication and reference-free signal decoupling, reducing communication overhead. Furthermore, we implement a miniaturized device comprising all essential components, highlighting its practicality as a receiver serving multiple users simultaneously. This approach paves the way for the integration of quantum sensing technologies in future 6G wireless communication networks.
Abstract:Leveraging the strong atom-light interaction, Rydberg atomic receivers significantly enhance the sensitivity of electromagnetic signal measurements, outperforming traditional antennas. Existing research primarily focuses on improving the architecture and signal detection algorithms of atomic receivers, while established signal processing schemes at the transmitter end have remained constant. However, these schemes fail to maximize the throughput of atomic receivers due to the nonlinearity of transmission model. To address this issue, we propose to design transmitter precoding in multiple-input multiple-output systems to achieve the capacity of atomic receivers. Initially, we harness a strong reference approximation to convert the nonlinear magnitude-detection model of atomic receivers into a linear real-part detector. Based on this approximation, we prove that the degree of freedom is min{Nr/2,Nt} for a MIMO system comprising an Nr-antenna atomic receiver and an Nt-antenna classic transmitter. To achieve the system capacity, we propose an IQ-aware fully digital precoding method. Unlike traditional complex-valued digital precoders that jointly manipulate the inphase and quadrature (IQ) symbols, our method employs four real matrices to independently precode the IQ baseband symbols, which is shown to be optimal for atomic receivers. Then, to eliminate the reliance on fully digital precoding architecture, we further explore IQ-aware hybrid precoding techniques. Our design incorporates a low-dimensional IQ-aware digital precoder and a high-dimensional complex analog precoder. Alternating minimization algorithms are proposed to produce IQ-aware hybrid precoders, with the objective of approaching the optimal IQ-aware fully digital precoder. Simulation results validate the superiority of proposed IQ-aware precoding methods over existing techniques in atomic MIMO communications.
Abstract:To support emerging applications ranging from holographic communications to extended reality, next-generation mobile wireless communication systems require ultra-fast and energy-efficient baseband processors. Traditional complementary metal-oxide-semiconductor (CMOS)-based baseband processors face two challenges in transistor scaling and the von Neumann bottleneck. To address these challenges, in-memory computing-based baseband processors using resistive random-access memory (RRAM) present an attractive solution. In this paper, we propose and demonstrate RRAM-implemented in-memory baseband processing for the widely adopted multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) air interface. Its key feature is to execute the key operations, including discrete Fourier transform (DFT) and MIMO detection using linear minimum mean square error (L-MMSE) and zero forcing (ZF), in one-step. In addition, RRAM-based channel estimation module is proposed and discussed. By prototyping and simulations, we demonstrate the feasibility of RRAM-based full-fledged communication system in hardware, and reveal it can outperform state-of-the-art baseband processors with a gain of 91.2$\times$ in latency and 671$\times$ in energy efficiency by large-scale simulations. Our results pave a potential pathway for RRAM-based in-memory computing to be implemented in the era of the sixth generation (6G) mobile communications.
Abstract:For the 6G mobile networks, in-situ model downloading has emerged as an important use case to enable real-time adaptive artificial intelligence on edge devices. However, the simultaneous downloading of diverse and high-dimensional models to multiple devices over wireless links presents a significant communication bottleneck. To overcome the bottleneck, we propose the framework of model broadcasting and assembling (MBA), which represents the first attempt on leveraging reusable knowledge, referring to shared parameters among tasks, to enable parameter broadcasting to reduce communication overhead. The MBA framework comprises two key components. The first, the MBA protocol, defines the system operations including parameter selection from a model library, power control for broadcasting, and model assembling at devices. The second component is the joint design of parameter-selection-and-power-control (PS-PC), which provides guarantees on devices' model performance and minimizes the downloading latency. The corresponding optimization problem is simplified by decomposition into the sequential PS and PC sub-problems without compromising its optimality. The PS sub-problem is solved efficiently by designing two efficient algorithms. On one hand, the low-complexity algorithm of greedy parameter selection features the construction of candidate model sets and a selection metric, both of which are designed under the criterion of maximum reusable knowledge among tasks. On the other hand, the optimal tree-search algorithm gains its efficiency via the proposed construction of a compact binary tree pruned using model architecture constraints and an intelligent branch-and-bound search. Given optimal PS, the optimal PC policy is derived in closed form. Extensive experiments demonstrate the substantial reduction in downloading latency achieved by the proposed MBA compared to traditional model downloading.
Abstract:To support emerging applications ranging from holographic communications to extended reality, next-generation mobile wireless communication systems require ultra-fast and energy-efficient (UFEE) baseband processors. Traditional complementary metal-oxide-semiconductor (CMOS)-based baseband processors face two challenges in transistor scaling and the von Neumann bottleneck. To address these challenges, in-memory computing-based baseband processors using resistive random-access memory (RRAM) present an attractive solution. In this paper, we propose and demonstrate RRAM-based in-memory baseband processing for the widely adopted multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) air interface. Its key feature is to execute the key operations, including discrete Fourier transform (DFT) and MIMO detection using linear minimum mean square error (L-MMSE) and zero forcing (ZF), in one-step. In addition, RRAM-based channel estimation as well as mapper/demapper modules are proposed. By prototyping and simulations, we demonstrate that the RRAM-based full-fledged communication system can significantly outperform its CMOS-based counterpart in terms of speed and energy efficiency by $10^3$ and $10^6$ times, respectively. The results pave a potential pathway for RRAM-based in-memory computing to be implemented in the era of the sixth generation (6G) mobile communications.
Abstract:In edge inference, an edge server provides remote-inference services to edge devices. This requires the edge devices to upload high-dimensional features of data samples over resource-constrained wireless channels, which creates a communication bottleneck. The conventional solution of feature pruning requires that the device has access to the inference model, which is unavailable in the current scenario of split inference. To address this issue, we propose the progressive feature transmission (ProgressFTX) protocol, which minimizes the overhead by progressively transmitting features until a target confidence level is reached. The optimal control policy of the protocol to accelerate inference is derived and it comprises two key operations. The first is importance-aware feature selection at the server, for which it is shown to be optimal to select the most important features, characterized by the largest discriminant gains of the corresponding feature dimensions. The second is transmission-termination control by the server for which the optimal policy is shown to exhibit a threshold structure. Specifically, the transmission is stopped when the incremental uncertainty reduction by further feature transmission is outweighed by its communication cost. The indices of the selected features and transmission decision are fed back to the device in each slot. The optimal policy is first derived for the tractable case of linear classification and then extended to the more complex case of classification using a convolutional neural network. Both Gaussian and fading channels are considered. Experimental results are obtained for both a statistical data model and a real dataset. It is seen that ProgressFTX can substantially reduce the communication latency compared to conventional feature pruning and random feature transmission.
Abstract:In 1940s, Claude Shannon developed the information theory focusing on quantifying the maximum data rate that can be supported by a communication channel. Guided by this, the main theme of wireless system design up until 5G was the data rate maximization. In his theory, the semantic aspect and meaning of messages were treated as largely irrelevant to communication. The classic theory started to reveal its limitations in the modern era of machine intelligence, consisting of the synergy between IoT and AI. By broadening the scope of the classic framework, in this article we present a view of semantic communication (SemCom) and conveying meaning through the communication systems. We address three communication modalities, human-to-human (H2H), human-to-machine (H2M), and machine-to-machine (M2M) communications. The latter two, the main theme of the article, represent the paradigm shift in communication and computing. H2M SemCom refers to semantic techniques for conveying meanings understandable by both humans and machines so that they can interact. M2M SemCom refers to effectiveness techniques for efficiently connecting machines such that they can effectively execute a specific computation task in a wireless network. The first part of the article introduces SemCom principles including encoding, system architecture, and layer-coupling and end-to-end design approaches. The second part focuses on specific techniques for application areas of H2M (human and AI symbiosis, recommendation, etc.) and M2M SemCom (distributed learning, split inference, etc.) Finally, we discuss the knowledge graphs approach for designing SemCom systems. We believe that this comprehensive introduction will provide a useful guide into the emerging area of SemCom that is expected to play an important role in 6G featuring connected intelligence and integrated sensing, computing, communication, and control.
Abstract:Federated edge learning (FEEL) is a widely adopted framework for training an artificial intelligence (AI) model distributively at edge devices to leverage their data while preserving their data privacy. The execution of a power-hungry learning task at energy-constrained devices is a key challenge confronting the implementation of FEEL. To tackle the challenge, we propose the solution of powering devices using wireless power transfer (WPT). To derive guidelines on deploying the resultant wirelessly powered FEEL (WP-FEEL) system, this work aims at the derivation of the tradeoff between the model convergence and the settings of power sources in two scenarios: 1) the transmission power and density of power-beacons (dedicated charging stations) if they are deployed, or otherwise 2) the transmission power of a server (access-point). The development of the proposed analytical framework relates the accuracy of distributed stochastic gradient estimation to the WPT settings, the randomness in both communication and WPT links, and devices' computation capacities. Furthermore, the local-computation at devices (i.e., mini-batch size and processor clock frequency) is optimized to efficiently use the harvested energy for gradient estimation. The resultant learning-WPT tradeoffs reveal the simple scaling laws of the model-convergence rate with respect to the transferred energy as well as the devices' computational energy efficiencies. The results provide useful guidelines on WPT provisioning to provide a guaranteer on learning performance. They are corroborated by experimental results using a real dataset.
Abstract:The 5G network connecting billions of Internet-of-Things (IoT) devices will make it possible to harvest an enormous amount of real-time mobile data. Furthermore, the 5G virtualization architecture will enable cloud computing at the (network) edge. The availability of both rich data and computation power at the edge has motivated Internet companies to deploy artificial intelligence (AI) there, creating the hot area of edge-AI. Edge learning, the theme of this project, concerns training edge-AI models, which endow on IoT devices intelligence for responding to real-time events. However, the transmission of high-dimensional data from many edge devices to servers can result in excessive communication latency, creating a bottleneck for edge learning. Traditional wireless techniques deigned for only radio access are ineffective in tackling the challenge. Attempts to overcome the communication bottleneck has led to the development of a new class of techniques for intelligent radio resource management (RRM), called data-importance aware RRM. Their designs feature the interplay of active machine learning and wireless communication. Specifically, the metrics that measure data importance in active learning (e.g., classification uncertainty and data diversity) are applied to RRM for efficient acquisition of distributed data in wireless networks to train AI models at servers. This article aims at providing an introduction to the emerging area of importance-aware RRM. To this end, we will introduce the design principles, survey recent advancements in the area, discuss some design examples, and suggest some promising research opportunities.