Abstract:Federated learning (FL) has emerged as a widely adopted paradigm for enabling edge learning with distributed data while ensuring data privacy. However, the traditional FL with deep neural networks trained via backpropagation can hardly meet the low-latency learning requirements in the sixth generation (6G) mobile networks. This challenge mainly arises from the high-dimensional model parameters to be transmitted and the numerous rounds of communication required for convergence due to the inherent randomness of the training process. To address this issue, we adopt the state-of-the-art principle of maximal coding rate reduction to learn linear discriminative features and extend the resultant white-box neural network into FL, yielding the novel framework of Low-Latency Federated Learning (LoLaFL) via forward-only propagation. LoLaFL enables layer-wise transmissions and aggregation with significantly fewer communication rounds, thereby considerably reducing latency. Additionally, we propose two \emph{nonlinear} aggregation schemes for LoLaFL. The first scheme is based on the proof that the optimal NN parameter aggregation in LoLaFL should be harmonic-mean-like. The second scheme further exploits the low-rank structures of the features and transmits the low-rank-approximated covariance matrices of features to achieve additional latency reduction. Theoretic analysis and experiments are conducted to evaluate the performance of LoLaFL. In comparison with traditional FL, the two nonlinear aggregation schemes for LoLaFL can achieve reductions in latency of over 91\% and 98\%, respectively, while maintaining comparable accuracies.
Abstract:Driven by the vision of ubiquitous connectivity and wireless intelligence, the evolution of ultra-dense constellation-based satellite-integrated Internet is underway, now taking preliminary shape. Nevertheless, the entrenched institutional silos and limited, nonrenewable heterogeneous network resources leave current satellite systems struggling to accommodate the escalating demands of next-generation intelligent applications. In this context, the distributed satellite information networks (DSIN), exemplified by the cohesive clustered satellites system, have emerged as an innovative architecture, bridging information gaps across diverse satellite systems, such as communication, navigation, and remote sensing, and establishing a unified, open information network paradigm to support resilient space information services. This survey first provides a profound discussion about innovative network architectures of DSIN, encompassing distributed regenerative satellite network architecture, distributed satellite computing network architecture, and reconfigurable satellite formation flying, to enable flexible and scalable communication, computing and control. The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks. To address these issues, a series of enabling technologies is identified, including channel modeling and estimation, cloud-native distributed MIMO cooperation, grant-free massive access, network routing, and the proper combination of all these diversity techniques. Furthermore, to heighten the overall resource efficiency, the cross-layer optimization techniques are further developed to meet upper-layer deterministic, adaptive and secure information services requirements. In addition, emerging research directions and new opportunities are highlighted on the way to achieving the DSIN vision.
Abstract:Semantic communications (SemCom) have emerged as a new paradigm for supporting sixth-generation applications, where semantic features of data are transmitted using artificial intelligence algorithms to attain high communication efficiencies. Most existing SemCom techniques utilize deep neural networks (DNNs) to implement analog source-channel mappings, which are incompatible with existing digital communication architectures. To address this issue, this paper proposes a novel framework of digital deep joint source-channel coding (D$^2$-JSCC) targeting image transmission in SemCom. The framework features digital source and channel codings that are jointly optimized to reduce the end-to-end (E2E) distortion. First, deep source coding with an adaptive density model is designed to encode semantic features according to their distributions. Second, digital channel coding is employed to protect encoded features against channel distortion. To facilitate their joint design, the E2E distortion is characterized as a function of the source and channel rates via the analysis of the Bayesian model and Lipschitz assumption on the DNNs. Then to minimize the E2E distortion, a two-step algorithm is proposed to control the source-channel rates for a given channel signal-to-noise ratio. Simulation results reveal that the proposed framework outperforms classic deep JSCC and mitigates the cliff and leveling-off effects, which commonly exist for separation-based approaches.
Abstract:This paper studies the fundamental limit of semantic communications over the discrete memoryless channel. We consider the scenario to send a semantic source consisting of an observation state and its corresponding semantic state, both of which are recovered at the receiver. To derive the performance limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the case with unknown semantic source distribution, while only a set of the source samples is available, we propose a neural-network-based method by leveraging the generative networks to learn the semantic source distribution. Furthermore, for a special case where the semantic state is a deterministic function of the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly known semantic source distribution, we propose a general Blahut-Arimoto algorithm to effectively compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios with ideal Gaussian semantic source and some practical datasets.
Abstract:Fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with computed tomography (CT) is considered the primary solution for detecting some cancers, such as lung cancer and melanoma. Automatic segmentation of tumors in PET/CT images can help reduce doctors' workload, thereby improving diagnostic quality. However, precise tumor segmentation is challenging due to the small size of many tumors and the similarity of high-uptake normal areas to the tumor regions. To address these issues, this paper proposes a localization-to-segmentation framework (L2SNet) for precise tumor segmentation. L2SNet first localizes the possible lesions in the lesion localization phase and then uses the location cues to shape the segmentation results in the lesion segmentation phase. To further improve the segmentation performance of L2SNet, we design an adaptive threshold scheme that takes the segmentation results of the two phases into consideration. The experiments with the MICCAI 2023 Automated Lesion Segmentation in Whole-Body FDG-PET/CT challenge dataset show that our method achieved a competitive result and was ranked in the top 7 methods on the preliminary test set. Our work is available at: https://github.com/MedCAI/L2SNet.
Abstract:Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become pivotal issue in semantic communications. This paper proposes a deep separate source-channel coding (DSSCC) framework for the joint task and data oriented semantic communications (JTD-SC) and utilizes the variational autoencoder approach to solve the rate-distortion problem with semantic distortion. First, by analyzing the Bayesian model of the DSSCC framework, we derive a novel rate-distortion optimization problem via the Bayesian inference approach for general data distributions and semantic tasks. Next, for a typical application of joint image transmission and classification, we combine the variational autoencoder approach with a forward adaption scheme to effectively extract image features and adaptively learn the density information of the obtained features. Finally, an iterative training algorithm is proposed to tackle the overfitting issue of deep learning models. Simulation results reveal that the proposed scheme achieves better coding gain as well as data recovery and classification performance in most scenarios, compared to the classical compression schemes and the emerging deep joint source-channel schemes.