Abstract:Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning models, lack explicit quantification of intricate and subtle parenchymal structures, including fibroglandular tissue. To address this, we propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures, and then incorporates these structures into a deep-learning-based prediction model via an attention mechanism. Our topology-informed deep learning model, \emph{TopoTxR}, leverages topology to provide enhanced insights into tissues critical for disease pathophysiology and treatment response. We empirically validate \emph{TopoTxR} using the VICTRE phantom breast dataset, showing that the topological structures extracted by our model effectively approximate the breast parenchymal structures. We further demonstrate \emph{TopoTxR}'s efficacy in predicting response to neoadjuvant chemotherapy. Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na\"ive imaging, in patients who respond favorably to therapy as achieving pathological complete response (pCR) versus those who do not. In a comparative analysis with several baselines on the publicly available I-SPY 1 dataset (N=161, including 47 patients with pCR and 114 without) and the Rutgers proprietary dataset (N=120, with 69 patients achieving pCR and 51 not), \emph{TopoTxR} demonstrates a notable improvement, achieving a 2.6\% increase in accuracy and a 4.6\% enhancement in AUC compared to the state-of-the-art method.
Abstract:Next-generation wireless networks are expected to develop a novel paradigm of integrated sensing and communications (ISAC) to enable both the high-accuracy sensing and high-speed communications. However, conventional mono-static ISAC systems, which simultaneously transmit and receive at the same equipment, may suffer from severe self-interference, and thus significantly degrade the system performance.To address this issue, this paper studies a multi-static ISAC system for cooperative target localization and communications, where the transmitter transmits ISAC signal to multiple receivers (REs) deployed at different positions. We derive the closed-form Cram\'{e}r-Rao bound (CRB) on the joint estimations of both the transmission delay and Doppler shift for cooperative target localization, and the CRB minimization problem is formulated by considering the cooperative cost and communication rate requirements for the REs. To solve this problem, we first decouple it into two subproblems for RE selection and transmit beamforming, respectively. Then, a minimax linkage-based method is proposed to solve the RE selection subproblem, and a successive convex approximation algorithm is adopted to deal with the transmit beamforming subproblem with non-convex constraints. Finally, numerical results validate our analysis and reveal that our proposed multi-static ISAC scheme achieves better ISAC performance than the conventional mono-static ones when the number of cooperative REs is large.
Abstract:A method to construct an observability-constrained magnetic-field-aided inertial navigation system is proposed. The proposed method builds upon the previously proposed observability-constrained extended Kalman filter and extends it to work with a magnetic-field-based odometry-aided inertial navigation system. The proposed method is evaluated using simulation and real-world data, showing that (i) the system observability properties are preserved, (ii) the estimation accuracy increases, and (iii) the perceived uncertainty calculated by the EKF is more consistent with the true uncertainty of the filter estimates.
Abstract:This paper studies the performance trade-off in a multi-user backscatter communication (BackCom) system for integrated sensing and communications (ISAC), where the multi-antenna ISAC transmitter sends excitation signals to power multiple single-antenna passive backscatter devices (BD), and the multi-antenna ISAC receiver performs joint sensing (localization) and communication tasks based on the backscattered signals from all BDs. Specifically, the localization performance is measured by the Cram\'{e}r-Rao bound (CRB) on the transmission delay and direction of arrival (DoA) of the backscattered signals, whose closed-form expression is obtained by deriving the corresponding Fisher information matrix (FIM), and the communication performance is characterized by the sum transmission rate of all BDs. Then, to characterize the trade-off between the localization and communication performances, the CRB minimization problem with the communication rate constraint is formulated, and is shown to be non-convex in general. By exploiting the hidden convexity, we propose an approach that combines fractional programming (FP) and Schur complement techniques to transform the original problem into an equivalent convex form. Finally, numerical results reveal the trade-off between the CRB and sum transmission rate achieved by our proposed method.
Abstract:Within the realm of rapidly advancing wireless sensor networks (WSNs), distributed detection assumes a significant role in various practical applications. However, critical challenge lies in maintaining robust detection performance while operating within the constraints of limited bandwidth and energy resources. This paper introduces a novel approach that combines model-driven deep learning (DL) with binary quantization to strike a balance between communication overhead and detection performance in WSNs. We begin by establishing the lower bound of detection error probability for distributed detection using the maximum a posteriori (MAP) criterion. Furthermore, we prove the global optimality of employing identical local quantizers across sensors, thereby maximizing the corresponding Chernoff information. Subsequently, the paper derives the minimum MAP detection error probability (MAPDEP) by inplementing identical binary probabilistic quantizers across the sensors. Moreover, the paper establishes the equivalence between utilizing all quantized data and their average as input to the detector at the fusion center (FC). In particular, we derive the Kullback-Leibler (KL) divergence, which measures the difference between the true posterior probability and output of the proposed detector. Leveraging the MAPDEP and KL divergence as loss functions, the paper proposes model-driven DL method to separately train the probability controller module in the quantizer and the detector module at the FC. Numerical results validate the convergence and effectiveness of the proposed method, which achieves near-optimal performance with reduced complexity for Gaussian hypothesis testing.
Abstract:Multi-modal brain images from MRI scans are widely used in clinical diagnosis to provide complementary information from different modalities. However, obtaining fully paired multi-modal images in practice is challenging due to various factors, such as time, cost, and artifacts, resulting in modality-missing brain images. To address this problem, unsupervised multi-modal brain image translation has been extensively studied. Existing methods suffer from the problem of brain tumor deformation during translation, as they fail to focus on the tumor areas when translating the whole images. In this paper, we propose an unsupervised tumor-aware distillation teacher-student network called UTAD-Net, which is capable of perceiving and translating tumor areas precisely. Specifically, our model consists of two parts: a teacher network and a student network. The teacher network learns an end-to-end mapping from source to target modality using unpaired images and corresponding tumor masks first. Then, the translation knowledge is distilled into the student network, enabling it to generate more realistic tumor areas and whole images without masks. Experiments show that our model achieves competitive performance on both quantitative and qualitative evaluations of image quality compared with state-of-the-art methods. Furthermore, we demonstrate the effectiveness of the generated images on downstream segmentation tasks. Our code is available at https://github.com/scut-HC/UTAD-Net.
Abstract:This two-part paper studies a point-to-point resonant beam communication (RBCom) system, where two separately deployed retroreflectors are adopted to generate the resonant beam between the transmitter and the receiver, and analyzes the transmission rate of the considered system under both the quasi-static and mobile scenarios. Part I of this paper focuses on the quasi-static scenario where the locations of the transmitter and the receiver are relatively fixed. Specifically, we propose a new information-bearing scheme which adopts a synchronization-based amplitude modulation method to mitigate the echo interference caused by the reflected resonant beam. With this scheme, we show that the quasi-static RBCom channel is equivalent to a Markov channel and can be further simplified as an amplitude-constrained additive white Gaussian noise channel. Moreover, we develop an algorithm that jointly employs the bisection and exhaustive search to maximize its capacity upper and lower bounds. Finally, numerical results validate our analysis. Part II of this paper discusses the performance of the RBCom system under the mobile scenario.
Abstract:Resonant beam communications (RBCom), which adopt oscillating photons between two separate retroreflectors for information transmission, exhibit potential advantages over other types of wireless optical communications (WOC). However, echo interference generated by the modulated beam reflected from the receiver affects the transmission of the desired information. To tackle this challenge, a synchronization-based point-to-point RBCom system is proposed to eliminate the echo interference, and the design for the transmitter and receiver is discussed. Subsequently, the performance of the proposed RBCom is evaluated and compared with that of visible light communications (VLC) and free space optical communications (FOC). Finally, future research directions are outlined and several implementation challenges of RBCom systems are highlighted.
Abstract:This two-part paper focuses on the system design and performance analysis for a point-to-point resonant beam communication (RBCom) system under both the quasi-static and mobile scenarios. Part I of this paper proposes a synchronization-based information transmission scheme and derives the capacity upper and lower bounds for the quasi-static channel case. In Part II, we address the mobile scenario, where the receiver is in relative motion to the transmitter, and derive a mobile RBCom channel model that jointly considers the Doppler effect, channel variation, and echo interference. With the obtained channel model, we prove that the channel gain of the mobile RBCom decreases as the number of transmitted frames increases, and thus show that the considered mobile RBCom terminates after the transmitter sends a certain number of frames without frequency compensation. By deriving an upper bound on the number of successfully transmitted frames, we formulate the throughput maximization problem for the considered mobile RBCom system, and solve it via a sequential parametric convex approximation (SPCA) method. Finally, simulation results validate the analysis of our proposed method in some typical scenarios.
Abstract:Semantic communications (SemCom) have emerged as a new paradigm for supporting sixth-generation applications, where semantic features of data are transmitted using artificial intelligence algorithms to attain high communication efficiencies. Most existing SemCom techniques utilize deep neural networks (DNNs) to implement analog source-channel mappings, which are incompatible with existing digital communication architectures. To address this issue, this paper proposes a novel framework of digital deep joint source-channel coding (D$^2$-JSCC) targeting image transmission in SemCom. The framework features digital source and channel codings that are jointly optimized to reduce the end-to-end (E2E) distortion. First, deep source coding with an adaptive density model is designed to encode semantic features according to their distributions. Second, digital channel coding is employed to protect encoded features against channel distortion. To facilitate their joint design, the E2E distortion is characterized as a function of the source and channel rates via the analysis of the Bayesian model and Lipschitz assumption on the DNNs. Then to minimize the E2E distortion, a two-step algorithm is proposed to control the source-channel rates for a given channel signal-to-noise ratio. Simulation results reveal that the proposed framework outperforms classic deep JSCC and mitigates the cliff and leveling-off effects, which commonly exist for separation-based approaches.