Abstract:Laryngo-pharyngeal cancer (LPC) is a highly lethal malignancy in the head and neck region. Recent advancements in tumor detection, particularly through dual-branch network architectures, have significantly improved diagnostic accuracy by integrating global and local feature extraction. However, challenges remain in accurately localizing lesions and fully capitalizing on the complementary nature of features within these branches. To address these issues, we propose SAM-Swin, an innovative SAM-driven Dual-Swin Transformer for laryngo-pharyngeal tumor detection. This model leverages the robust segmentation capabilities of the Segment Anything Model 2 (SAM2) to achieve precise lesion segmentation. Meanwhile, we present a multi-scale lesion-aware enhancement module (MS-LAEM) designed to adaptively enhance the learning of nuanced complementary features across various scales, improving the quality of feature extraction and representation. Furthermore, we implement a multi-scale class-aware guidance (CAG) loss that delivers multi-scale targeted supervision, thereby enhancing the model's capacity to extract class-specific features. To validate our approach, we compiled three LPC datasets from the First Affiliated Hospital (FAHSYSU), the Sixth Affiliated Hospital (SAHSYSU) of Sun Yat-sen University, and Nanfang Hospital of Southern Medical University (NHSMU). The FAHSYSU dataset is utilized for internal training, while the SAHSYSU and NHSMU datasets serve for external evaluation. Extensive experiments demonstrate that SAM-Swin outperforms state-of-the-art methods, showcasing its potential for advancing LPC detection and improving patient outcomes. The source code of SAM-Swin is available at the URL of \href{https://github.com/VVJia/SAM-Swin}{https://github.com/VVJia/SAM-Swin}.
Abstract:Diffusion models have recently gained recognition for generating diverse and high-quality content, especially in the domain of image synthesis. These models excel not only in creating fixed-size images but also in producing panoramic images. However, existing methods often struggle with spatial layout consistency when producing high-resolution panoramas, due to the lack of guidance of the global image layout. In this paper, we introduce the Multi-Scale Diffusion (MSD) framework, a plug-and-play module that extends the existing panoramic image generation framework to multiple resolution levels. By utilizing gradient descent techniques, our method effectively incorporates structural information from low-resolution images into high-resolution outputs. A comprehensive evaluation of the proposed method was conducted, comparing it with the prior works in qualitative and quantitative dimensions. The evaluation results demonstrate that our method significantly outperforms others in generating coherent high-resolution panoramas.
Abstract:Laryngo-pharyngeal cancer (LPC) is a highly fatal malignant disease affecting the head and neck region. Previous studies on endoscopic tumor detection, particularly those leveraging dual-branch network architectures, have shown significant advancements in tumor detection. These studies highlight the potential of dual-branch networks in improving diagnostic accuracy by effectively integrating global and local (lesion) feature extraction. However, they are still limited in their capabilities to accurately locate the lesion region and capture the discriminative feature information between the global and local branches. To address these issues, we propose a novel SAM-guided fusion network (SAM-FNet), a dual-branch network for laryngo-pharyngeal tumor detection. By leveraging the powerful object segmentation capabilities of the Segment Anything Model (SAM), we introduce the SAM into the SAM-FNet to accurately segment the lesion region. Furthermore, we propose a GAN-like feature optimization (GFO) module to capture the discriminative features between the global and local branches, enhancing the fusion feature complementarity. Additionally, we collect two LPC datasets from the First Affiliated Hospital (FAHSYSU) and the Sixth Affiliated Hospital (SAHSYSU) of Sun Yat-sen University. The FAHSYSU dataset is used as the internal dataset for training the model, while the SAHSYSU dataset is used as the external dataset for evaluating the model's performance. Extensive experiments on both datasets of FAHSYSU and SAHSYSU demonstrate that the SAM-FNet can achieve competitive results, outperforming the state-of-the-art counterparts. The source code of SAM-FNet is available at the URL of https://github.com/VVJia/SAM-FNet.
Abstract:Multi-modal brain images from MRI scans are widely used in clinical diagnosis to provide complementary information from different modalities. However, obtaining fully paired multi-modal images in practice is challenging due to various factors, such as time, cost, and artifacts, resulting in modality-missing brain images. To address this problem, unsupervised multi-modal brain image translation has been extensively studied. Existing methods suffer from the problem of brain tumor deformation during translation, as they fail to focus on the tumor areas when translating the whole images. In this paper, we propose an unsupervised tumor-aware distillation teacher-student network called UTAD-Net, which is capable of perceiving and translating tumor areas precisely. Specifically, our model consists of two parts: a teacher network and a student network. The teacher network learns an end-to-end mapping from source to target modality using unpaired images and corresponding tumor masks first. Then, the translation knowledge is distilled into the student network, enabling it to generate more realistic tumor areas and whole images without masks. Experiments show that our model achieves competitive performance on both quantitative and qualitative evaluations of image quality compared with state-of-the-art methods. Furthermore, we demonstrate the effectiveness of the generated images on downstream segmentation tasks. Our code is available at https://github.com/scut-HC/UTAD-Net.
Abstract:Bagging has achieved great success in the field of machine learning by integrating multiple base classifiers to build a single strong classifier to reduce model variance. The performance improvement of bagging mainly relies on the number and diversity of base classifiers. However, traditional deep learning model training methods are expensive to train individually and difficult to train multiple models with low similarity in a restricted dataset. Recently, diffusion models, which have been tremendously successful in the fields of imaging and vision, have been found to be effective in generating neural network model weights and biases with diversity. We creatively propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND). The originality of BEND comes from the first use of a neural network diffusion model to efficiently build base classifiers for bagging. Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model to realize a diffusion model from noise to valid neural network parameters. Subsequently, we generate several base classifiers using the trained diffusion model. Finally, we integrate these ba se classifiers for various inference tasks using the Bagging method. Resulting experiments on multiple models and datasets show that our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model. At the same time, new models diffused using the diffusion model have higher diversity and lower cost than multiple models trained using traditional methods. The BEND approach successfully introduces diffusion models into the new deep learning training domain and provides a new paradigm for future deep learning training and inference.
Abstract:Due to the difficulties of obtaining multimodal paired images in clinical practice, recent studies propose to train brain tumor segmentation models with unpaired images and capture complementary information through modality translation. However, these models cannot fully exploit the complementary information from different modalities. In this work, we thus present a novel two-step (intra-modality and inter-modality) curriculum disentanglement learning framework to effectively utilize privileged semi-paired images, i.e. limited paired images that are only available in training, for brain tumor segmentation. Specifically, in the first step, we propose to conduct reconstruction and segmentation with augmented intra-modality style-consistent images. In the second step, the model jointly performs reconstruction, unsupervised/supervised translation, and segmentation for both unpaired and paired inter-modality images. A content consistency loss and a supervised translation loss are proposed to leverage complementary information from different modalities in this step. Through these two steps, our method effectively extracts modality-specific style codes describing the attenuation of tissue features and image contrast, and modality-invariant content codes containing anatomical and functional information from the input images. Experiments on three brain tumor segmentation tasks show that our model outperforms competing segmentation models based on unpaired images.
Abstract:People perceive the world with different senses, such as sight, hearing, smell, and touch. Processing and fusing information from multiple modalities enables Artificial Intelligence to understand the world around us more easily. However, when there are missing modalities, the number of available modalities is different in diverse situations, which leads to an N-to-One fusion problem. To solve this problem, we propose a transformer based fusion block called TFusion. Different from preset formulations or convolution based methods, the proposed block automatically learns to fuse available modalities without synthesizing or zero-padding missing ones. Specifically, the feature representations extracted from upstream processing model are projected as tokens and fed into transformer layers to generate latent multimodal correlations. Then, to reduce the dependence on particular modalities, a modal attention mechanism is introduced to build a shared representation, which can be applied by the downstream decision model. The proposed TFusion block can be easily integrated into existing multimodal analysis networks. In this work, we apply TFusion to different backbone networks for multimodal human activity recognition and brain tumor segmentation tasks. Extensive experimental results show that the TFusion block achieves better performance than the competing fusion strategies.
Abstract:In clinical practice, well-aligned multi-modal images, such as Magnetic Resonance (MR) and Computed Tomography (CT), together can provide complementary information for image-guided therapies. Multi-modal image registration is essential for the accurate alignment of these multi-modal images. However, it remains a very challenging task due to complicated and unknown spatial correspondence between different modalities. In this paper, we propose a novel translation-based unsupervised deformable image registration approach to convert the multi-modal registration problem to a mono-modal one. Specifically, our approach incorporates a discriminator-free translation network to facilitate the training of the registration network and a patchwise contrastive loss to encourage the translation network to preserve object shapes. Furthermore, we propose to replace an adversarial loss, that is widely used in previous multi-modal image registration methods, with a pixel loss in order to integrate the output of translation into the target modality. This leads to an unsupervised method requiring no ground-truth deformation or pairs of aligned images for training. We evaluate four variants of our approach on the public Learn2Reg 2021 datasets \cite{hering2021learn2reg}. The experimental results demonstrate that the proposed architecture achieves state-of-the-art performance. Our code is available at https://github.com/heyblackC/DFMIR.
Abstract:We introduce a novel frame-interpolation-based method for slice imputation to improve segmentation accuracy for anisotropic 3D medical images, in which the number of slices and their corresponding segmentation labels can be increased between two consecutive slices in anisotropic 3D medical volumes. Unlike previous inter-slice imputation methods, which only focus on the smoothness in the axial direction, this study aims to improve the smoothness of the interpolated 3D medical volumes in all three directions: axial, sagittal, and coronal. The proposed multitask inter-slice imputation method, in particular, incorporates a smoothness loss function to evaluate the smoothness of the interpolated 3D medical volumes in the through-plane direction (sagittal and coronal). It not only improves the resolution of the interpolated 3D medical volumes in the through-plane direction but also transforms them into isotropic representations, which leads to better segmentation performances. Experiments on whole tumor segmentation in the brain, liver tumor segmentation, and prostate segmentation indicate that our method outperforms the competing slice imputation methods on both computed tomography and magnetic resonance images volumes in most cases.
Abstract:Digital image watermarking seeks to protect the digital media information from unauthorized access, where the message is embedded into the digital image and extracted from it, even some noises or distortions are applied under various data processing including lossy image compression and interactive content editing. Traditional image watermarking solutions easily suffer from robustness when specified with some prior constraints, while recent deep learning-based watermarking methods could not tackle the information loss problem well under various separate pipelines of feature encoder and decoder. In this paper, we propose a novel digital image watermarking solution with a compact neural network, named Invertible Watermarking Network (IWN). Our IWN architecture is based on a single Invertible Neural Network (INN), this bijective propagation framework enables us to effectively solve the challenge of message embedding and extraction simultaneously, by taking them as a pair of inverse problems for each other and learning a stable invertible mapping. In order to enhance the robustness of our watermarking solution, we specifically introduce a simple but effective bit message normalization module to condense the bit message to be embedded, and a noise layer is designed to simulate various practical attacks under our IWN framework. Extensive experiments demonstrate the superiority of our solution under various distortions.