Abstract:Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code and dataset are available at https://github.com/Ou-Young-1999/DFNet.
Abstract:Multiple object tracking (MOT) tends to become more challenging when severe occlusions occur. In this paper, we analyze the limitations of traditional Convolutional Neural Network-based methods and Transformer-based methods in handling occlusions and propose DNMOT, an end-to-end trainable DeNoising Transformer for MOT. To address the challenge of occlusions, we explicitly simulate the scenarios when occlusions occur. Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture, so that our model can exhibit strong robustness and perform well under crowded scenes. Additionally, we propose a Cascaded Mask strategy to better coordinate the interaction between different types of queries in the decoder to prevent the mutual suppression between neighboring trajectories under crowded scenes. Notably, the proposed method requires no additional modules like matching strategy and motion state estimation in inference. We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
Abstract:Scene text recognition (STR) has attracted much attention due to its broad applications. The previous works pay more attention to dealing with the recognition of Latin text images with complex backgrounds by introducing language models or other auxiliary networks. Different from Latin texts, many vertical Chinese texts exist in natural scenes, which brings difficulties to current state-of-the-art STR methods. In this paper, we take the first attempt to extract orientation-independent visual features by disentangling content and orientation information of text images, thus recognizing both horizontal and vertical texts robustly in natural scenes. Specifically, we introduce a Character Image Reconstruction Network (CIRN) to recover corresponding printed character images with disentangled content and orientation information. We conduct experiments on a scene dataset for benchmarking Chinese text recognition, and the results demonstrate that the proposed method can indeed improve performance through disentangling content and orientation information. To further validate the effectiveness of our method, we additionally collect a Vertical Chinese Text Recognition (VCTR) dataset. The experimental results show that the proposed method achieves 45.63% improvement on VCTR when introducing CIRN to the baseline model.
Abstract:Scene text recognition has been studied for decades due to its broad applications. However, despite Chinese characters possessing different characteristics from Latin characters, such as complex inner structures and large categories, few methods have been proposed for Chinese Text Recognition (CTR). Particularly, the characteristic of large categories poses challenges in dealing with zero-shot and few-shot Chinese characters. In this paper, inspired by the way humans recognize Chinese texts, we propose a two-stage framework for CTR. Firstly, we pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS). This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character. Subsequently, the learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition through image-IDS matching. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on both Chinese character recognition (CCR) and CTR. The experimental results demonstrate that the proposed method performs best in CCR and outperforms previous methods in most scenarios of the CTR benchmark. It is worth noting that the proposed method can recognize zero-shot Chinese characters in text images without fine-tuning, whereas previous methods require fine-tuning when new classes appear. The code is available at https://github.com/FudanVI/FudanOCR/tree/main/image-ids-CTR.
Abstract:The flourishing blossom of deep learning has witnessed the rapid development of text recognition in recent years. However, the existing text recognition methods are mainly for English texts, whereas ignoring the pivotal role of Chinese texts. As another widely-spoken language, Chinese text recognition in all ways has extensive application markets. Based on our observations, we attribute the scarce attention on Chinese text recognition to the lack of reasonable dataset construction standards, unified evaluation methods, and results of the existing baselines. To fill this gap, we manually collect Chinese text datasets from publicly available competitions, projects, and papers, then divide them into four categories including scene, web, document, and handwriting datasets. Furthermore, we evaluate a series of representative text recognition methods on these datasets with unified evaluation methods to provide experimental results. By analyzing the experimental results, we surprisingly observe that state-of-the-art baselines for recognizing English texts cannot perform well on Chinese scenarios. We consider that there still remain numerous challenges under exploration due to the characteristics of Chinese texts, which are quite different from English texts. The code and datasets are made publicly available at https://github.com/FudanVI/benchmarking-chinese-text-recognition.