Abstract:Scene text segmentation aims at cropping texts from scene images, which is usually used to help generative models edit or remove texts. The existing text segmentation methods tend to involve various text-related supervisions for better performance. However, most of them ignore the importance of text edges, which are significant for downstream applications. In this paper, we propose Edge-Aware Transformers, termed EAFormer, to segment texts more accurately, especially at the edge of texts. Specifically, we first design a text edge extractor to detect edges and filter out edges of non-text areas. Then, we propose an edge-guided encoder to make the model focus more on text edges. Finally, an MLP-based decoder is employed to predict text masks. We have conducted extensive experiments on commonly-used benchmarks to verify the effectiveness of EAFormer. The experimental results demonstrate that the proposed method can perform better than previous methods, especially on the segmentation of text edges. Considering that the annotations of several benchmarks (e.g., COCO_TS and MLT_S) are not accurate enough to fairly evaluate our methods, we have relabeled these datasets. Through experiments, we observe that our method can achieve a higher performance improvement when more accurate annotations are used for training.
Abstract:Existing person re-identification (Re-ID) methods principally deploy the ImageNet-1K dataset for model initialization, which inevitably results in sub-optimal situations due to the large domain gap. One of the key challenges is that building large-scale person Re-ID datasets is time-consuming. Some previous efforts address this problem by collecting person images from the internet e.g., LUPerson, but it struggles to learn from unlabeled, uncontrollable, and noisy data. In this paper, we present a novel paradigm Diffusion-ReID to efficiently augment and generate diverse images based on known identities without requiring any cost of data collection and annotation. Technically, this paradigm unfolds in two stages: generation and filtering. During the generation stage, we propose Language Prompts Enhancement (LPE) to ensure the ID consistency between the input image sequence and the generated images. In the diffusion process, we propose a Diversity Injection (DI) module to increase attribute diversity. In order to make the generated data have higher quality, we apply a Re-ID confidence threshold filter to further remove the low-quality images. Benefiting from our proposed paradigm, we first create a new large-scale person Re-ID dataset Diff-Person, which consists of over 777K images from 5,183 identities. Next, we build a stronger person Re-ID backbone pre-trained on our Diff-Person. Extensive experiments are conducted on four person Re-ID benchmarks in six widely used settings. Compared with other pre-training and self-supervised competitors, our approach shows significant superiority.
Abstract:Multiple object tracking (MOT) tends to become more challenging when severe occlusions occur. In this paper, we analyze the limitations of traditional Convolutional Neural Network-based methods and Transformer-based methods in handling occlusions and propose DNMOT, an end-to-end trainable DeNoising Transformer for MOT. To address the challenge of occlusions, we explicitly simulate the scenarios when occlusions occur. Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture, so that our model can exhibit strong robustness and perform well under crowded scenes. Additionally, we propose a Cascaded Mask strategy to better coordinate the interaction between different types of queries in the decoder to prevent the mutual suppression between neighboring trajectories under crowded scenes. Notably, the proposed method requires no additional modules like matching strategy and motion state estimation in inference. We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
Abstract:We study the performance of a Bayesian statistician who estimates a rank-one signal corrupted by non-symmetric rotationally invariant noise with a generic distribution of singular values. As the signal-to-noise ratio and the noise structure are unknown, a Gaussian setup is incorrectly assumed. We derive the exact analytic expression for the error of the mismatched Bayes estimator and also provide the analysis of an approximate message passing (AMP) algorithm. The first result exploits the asymptotic behavior of spherical integrals for rectangular matrices and of low-rank matrix perturbations; the second one relies on the design and analysis of an auxiliary AMP. The numerical experiments show that there is a performance gap between the AMP and Bayes estimators, which is due to the incorrect estimation of the signal norm.