Summer
Abstract:Document parsing has garnered widespread attention as vision-language models (VLMs) advance OCR capabilities. However, the field remains fragmented across dozens of specialized models with varying strengths, forcing users to navigate complex model selection and limiting system scalability. Moreover, existing two-stage approaches depend on axis-aligned bounding boxes for layout detection, failing to handle distorted or photographed documents effectively. To this end, we present Dolphin-v2, a two-stage document image parsing model that substantially improves upon the original Dolphin. In the first stage, Dolphin-v2 jointly performs document type classification (digital-born versus photographed) alongside layout analysis. For digital-born documents, it conducts finer-grained element detection with reading order prediction. In the second stage, we employ a hybrid parsing strategy: photographed documents are parsed holistically as complete pages to handle geometric distortions, while digital-born documents undergo element-wise parallel parsing guided by the detected layout anchors, enabling efficient content extraction. Compared with the original Dolphin, Dolphin-v2 introduces several crucial enhancements: (1) robust parsing of photographed documents via holistic page-level understanding, (2) finer-grained element detection (21 categories) with semantic attribute extraction such as author information and document metadata, and (3) code block recognition with indentation preservation, which existing systems typically lack. Comprehensive evaluations are conducted on DocPTBench, OmniDocBench, and our self-constructed RealDoc-160 benchmark. The results demonstrate substantial improvements: +14.78 points overall on the challenging OmniDocBench and 91% error reduction on photographed documents, while maintaining efficient inference through parallel processing.
Abstract:Book image rectification presents unique challenges in document image processing due to complex geometric distortions from binding constraints, where left and right pages exhibit distinctly asymmetric curvature patterns. However, existing single-page document image rectification methods fail to capture the coupled geometric relationships between adjacent pages in books. In this work, we introduce BookNet, the first end-to-end deep learning framework specifically designed for dual-page book image rectification. BookNet adopts a dual-branch architecture with cross-page attention mechanisms, enabling it to estimate warping flows for both individual pages and the complete book spread, explicitly modeling how left and right pages influence each other. Moreover, to address the absence of specialized datasets, we present Book3D, a large-scale synthetic dataset for training, and Book100, a comprehensive real-world benchmark for evaluation. Extensive experiments demonstrate that BookNet outperforms existing state-of-the-art methods on book image rectification. Code and dataset will be made publicly available.
Abstract:Vision-based end-to-end (E2E) driving has garnered significant interest in the research community due to its scalability and synergy with multimodal large language models (MLLMs). However, current E2E driving benchmarks primarily feature nominal scenarios, failing to adequately test the true potential of these systems. Furthermore, existing open-loop evaluation metrics often fall short in capturing the multi-modal nature of driving or effectively evaluating performance in long-tail scenarios. To address these gaps, we introduce the Waymo Open Dataset for End-to-End Driving (WOD-E2E). WOD-E2E contains 4,021 driving segments (approximately 12 hours), specifically curated for challenging long-tail scenarios that that are rare in daily life with an occurring frequency of less than 0.03%. Concretely, each segment in WOD-E2E includes the high-level routing information, ego states, and 360-degree camera views from 8 surrounding cameras. To evaluate the E2E driving performance on these long-tail situations, we propose a novel open-loop evaluation metric: Rater Feedback Score (RFS). Unlike conventional metrics that measure the distance between predicted way points and the logs, RFS measures how closely the predicted trajectory matches rater-annotated trajectory preference labels. We have released rater preference labels for all WOD-E2E validation set segments, while the held out test set labels have been used for the 2025 WOD-E2E Challenge. Through our work, we aim to foster state of the art research into generalizable, robust, and safe end-to-end autonomous driving agents capable of handling complex real-world situations.
Abstract:Depth estimation, essential for autonomous driving, seeks to interpret the 3D environment surrounding vehicles. The development of radar sensors, known for their cost-efficiency and robustness, has spurred interest in radar-camera fusion-based solutions. However, existing algorithms fuse features from these modalities without accounting for weather conditions, despite radars being known to be more robust than cameras under adverse weather. Additionally, while Vision-Language models have seen rapid advancement, utilizing language descriptions alongside other modalities for depth estimation remains an open challenge. This paper first introduces a text-generation strategy along with feature extraction and fusion techniques that can assist monocular depth estimation pipelines, leading to improved accuracy across different algorithms on the KITTI dataset. Building on this, we propose TRIDE, a radar-camera fusion algorithm that enhances text feature extraction by incorporating radar point information. To address the impact of weather on sensor performance, we introduce a weather-aware fusion block that adaptively adjusts radar weighting based on current weather conditions. Our method, benchmarked on the nuScenes dataset, demonstrates performance gains over the state-of-the-art, achieving a 12.87% improvement in MAE and a 9.08% improvement in RMSE. Code: https://github.com/harborsarah/TRIDE
Abstract:Current language model training paradigms typically terminate learning upon reaching the end-of-sequence (<eos>}) token, overlooking the potential learning opportunities in the post-completion space. We propose Post-Completion Learning (PCL), a novel training framework that systematically utilizes the sequence space after model output completion, to enhance both the reasoning and self-evaluation abilities. PCL enables models to continue generating self-assessments and reward predictions during training, while maintaining efficient inference by stopping at the completion point. To fully utilize this post-completion space, we design a white-box reinforcement learning method: let the model evaluate the output content according to the reward rules, then calculate and align the score with the reward functions for supervision. We implement dual-track SFT to optimize both reasoning and evaluation capabilities, and mixed it with RL training to achieve multi-objective hybrid optimization. Experimental results on different datasets and models demonstrate consistent improvements over traditional SFT and RL methods. Our method provides a new technical path for language model training that enhances output quality while preserving deployment efficiency.
Abstract:Low-rank representation learning has emerged as a powerful tool for recovering missing values in power load data due to its ability to exploit the inherent low-dimensional structures of spatiotemporal measurements. Among various techniques, low-rank factorization models are favoured for their efficiency and interpretability. However, their performance is highly sensitive to the choice of regularization parameters, which are typically fixed or manually tuned, resulting in limited generalization capability or slow convergence in practical scenarios. In this paper, we propose a Regularization-optimized Low-Rank Factorization, which introduces a Proportional-Integral-Derivative controller to adaptively adjust the regularization coefficient. Furthermore, we provide a detailed algorithmic complexity analysis, showing that our method preserves the computational efficiency of stochastic gradient descent while improving adaptivity. Experimental results on real-world power load datasets validate the superiority of our method in both imputation accuracy and training efficiency compared to existing baselines.




Abstract:Recent advancements in reasoning have significantly enhanced the capabilities of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) across diverse tasks. However, excessive reliance on chain-of-thought (CoT) reasoning can impair model performance and brings unnecessarily lengthened outputs, reducing efficiency. Our work reveals that prolonged reasoning does not universally improve accuracy and even degrade performance on simpler tasks. To address this, we propose Certainty-based Adaptive Reasoning (CAR), a novel framework that dynamically switches between short answers and long-form reasoning based on the model perplexity. CAR first generates a short answer and evaluates its perplexity, triggering reasoning only when the model exhibits low confidence (i.e., high perplexity). Experiments across diverse multimodal VQA/KIE benchmarks and text reasoning datasets show that CAR outperforms both short-answer and long-form reasoning approaches, striking an optimal balance between accuracy and efficiency.
Abstract:Document image parsing is challenging due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Current approaches either assemble specialized expert models or directly generate page-level content autoregressively, facing integration overhead, efficiency bottlenecks, and layout structure degradation despite their decent performance. To address these limitations, we present \textit{Dolphin} (\textit{\textbf{Do}cument Image \textbf{P}arsing via \textbf{H}eterogeneous Anchor Prompt\textbf{in}g}), a novel multimodal document image parsing model following an analyze-then-parse paradigm. In the first stage, Dolphin generates a sequence of layout elements in reading order. These heterogeneous elements, serving as anchors and coupled with task-specific prompts, are fed back to Dolphin for parallel content parsing in the second stage. To train Dolphin, we construct a large-scale dataset of over 30 million samples, covering multi-granularity parsing tasks. Through comprehensive evaluations on both prevalent benchmarks and self-constructed ones, Dolphin achieves state-of-the-art performance across diverse page-level and element-level settings, while ensuring superior efficiency through its lightweight architecture and parallel parsing mechanism. The code and pre-trained models are publicly available at https://github.com/ByteDance/Dolphin
Abstract:Autoregressive models have become the de facto choice for sequence generation tasks, but standard approaches treat digits as independent tokens and apply cross-entropy loss, overlooking the coherent structure of numerical sequences. This paper introduces Numerical Token Integrity Loss (NTIL) to address this gap. NTIL operates at two levels: (1) token-level, where it extends the Earth Mover's Distance (EMD) to preserve ordinal relationships between numerical values, and (2) sequence-level, where it penalizes the overall discrepancy between the predicted and actual sequences. This dual approach improves numerical prediction and integrates effectively with LLMs/MLLMs. Extensive experiments show significant performance improvements with NTIL.
Abstract:The rapid advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced capabilities in Document Understanding. However, prevailing benchmarks like DocVQA and ChartQA predominantly comprise \textit{scanned or digital} documents, inadequately reflecting the intricate challenges posed by diverse real-world scenarios, such as variable illumination and physical distortions. This paper introduces WildDoc, the inaugural benchmark designed specifically for assessing document understanding in natural environments. WildDoc incorporates a diverse set of manually captured document images reflecting real-world conditions and leverages document sources from established benchmarks to facilitate comprehensive comparisons with digital or scanned documents. Further, to rigorously evaluate model robustness, each document is captured four times under different conditions. Evaluations of state-of-the-art MLLMs on WildDoc expose substantial performance declines and underscore the models' inadequate robustness compared to traditional benchmarks, highlighting the unique challenges posed by real-world document understanding. Our project homepage is available at https://bytedance.github.io/WildDoc.