Abstract:In reality, users have different interests in different periods, regions, scenes, etc. Such changes in interest are so drastic that they are difficult to be captured by recommenders. Existing multi-domain learning can alleviate this problem. However, the structure of the industrial recommendation system is complex, the amount of data is huge, and the training cost is extremely high, so it is difficult to modify the structure of the industrial recommender and re-train it. To fill this gap, we consider recommenders as large pre-trained models and fine-tune them. We first propose the theory of the information bottleneck for fine-tuning and present an explanation for the fine-tuning technique in recommenders. To tailor for recommendation, we design an information-aware adaptive kernel (IAK) technique to fine-tune the pre-trained recommender. Specifically, we define fine-tuning as two phases: knowledge compression and knowledge matching and let the training stage of IAK explicitly approximate these two phases. Our proposed approach designed from the essence of fine-tuning is well interpretable. Extensive online and offline experiments show the superiority of our proposed method. Besides, we also share unique and important lessons we learned when deploying the method in a large-scale online platform. We also present the potential issues of fine-tuning techniques in recommendation systems and the corresponding solutions. The recommender with IAK technique has been deployed on the homepage of a billion-scale online food platform for several months and has yielded considerable profits in our business.
Abstract:A deraining network may be interpreted as a condition generator. Image degradation generated by the deraining network can be attributed to defective embedding features that serve as conditions. Existing image deraining methods usually ignore uncertainty-caused model errors that lower embedding quality and embed low-quality features into the model directly. In contrast, we replace low-quality features by latent high-quality features. The spirit of closed-loop feedback in the automatic control field is borrowed to obtain latent high-quality features. A new method for error detection and feature compensation is proposed to address model errors. Extensive experiments on benchmark datasets as well as specific real datasets demonstrate the advantage of the proposed method over recent state-of-the-art methods.