Abstract:Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest recently. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities on certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10,000 human-verified question-answering pairs and a high proportion of difficult samples. After carefully benchmarking state-of-the-art LMMs on OCRBench v2, we find that 20 out of 22 LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The benchmark and evaluation scripts are available at https://github.com/Yuliang-liu/MultimodalOCR.
Abstract:The development of Urdu scene text detection, recognition, and Visual Question Answering (VQA) technologies is crucial for advancing accessibility, information retrieval, and linguistic diversity in digital content, facilitating better understanding and interaction with Urdu-language visual data. This initiative seeks to bridge the gap between textual and visual comprehension. We propose a new multi-task Urdu scene text dataset comprising over 1000 natural scene images, which can be used for text detection, recognition, and VQA tasks. We provide fine-grained annotations for text instances, addressing the limitations of previous datasets for facing arbitrary-shaped texts. By incorporating additional annotation points, this dataset facilitates the development and assessment of methods that can handle diverse text layouts, intricate shapes, and non-standard orientations commonly encountered in real-world scenarios. Besides, the VQA annotations make it the first benchmark for the Urdu Text VQA method, which can prompt the development of Urdu scene text understanding. The proposed dataset is available at: https://github.com/Hiba-MeiRuan/Urdu-VQA-Dataset-/tree/main