Abstract:Trustworthiness is an essential prerequisite for the real-world application of large language models. In this paper, we focus on the trustworthiness of language models with respect to retrieval augmentation. Despite being supported with external evidence, retrieval-augmented generation still suffers from hallucinations, one primary cause of which is the conflict between contextual and parametric knowledge. We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge. Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence and disregards the interference of parametric knowledge. Specifically, we propose a reinforcement learning based algorithm Trustworthy-Alignment, theoretically and experimentally demonstrating large language models' capability of reaching a trustworthy status without explicit supervision on how to respond. Our work highlights the potential of large language models on exploring its intrinsic abilities by its own and expands the application scenarios of alignment from fulfilling human preference to creating trustworthy agents.
Abstract:We introduce MotionRL, the first approach to utilize Multi-Reward Reinforcement Learning (RL) for optimizing text-to-motion generation tasks and aligning them with human preferences. Previous works focused on improving numerical performance metrics on the given datasets, often neglecting the variability and subjectivity of human feedback. In contrast, our novel approach uses reinforcement learning to fine-tune the motion generator based on human preferences prior knowledge of the human perception model, allowing it to generate motions that better align human preferences. In addition, MotionRL introduces a novel multi-objective optimization strategy to approximate Pareto optimality between text adherence, motion quality, and human preferences. Extensive experiments and user studies demonstrate that MotionRL not only allows control over the generated results across different objectives but also significantly enhances performance across these metrics compared to other algorithms.
Abstract:Reconstructing urban street scenes is crucial due to its vital role in applications such as autonomous driving and urban planning. These scenes are characterized by long and narrow camera trajectories, occlusion, complex object relationships, and data sparsity across multiple scales. Despite recent advancements, existing surface reconstruction methods, which are primarily designed for object-centric scenarios, struggle to adapt effectively to the unique characteristics of street scenes. To address this challenge, we introduce StreetSurfGS, the first method to employ Gaussian Splatting specifically tailored for scalable urban street scene surface reconstruction. StreetSurfGS utilizes a planar-based octree representation and segmented training to reduce memory costs, accommodate unique camera characteristics, and ensure scalability. Additionally, to mitigate depth inaccuracies caused by object overlap, we propose a guided smoothing strategy within regularization to eliminate inaccurate boundary points and outliers. Furthermore, to address sparse views and multi-scale challenges, we use a dual-step matching strategy that leverages adjacent and long-term information. Extensive experiments validate the efficacy of StreetSurfGS in both novel view synthesis and surface reconstruction.
Abstract:Embodied Everyday Task is a popular task in the embodied AI community, requiring agents to make a sequence of actions based on natural language instructions and visual observations. Traditional learning-based approaches face two challenges. Firstly, natural language instructions often lack explicit task planning. Secondly, extensive training is required to equip models with knowledge of the task environment. Previous works based on Large Language Model (LLM) either suffer from poor performance due to the lack of task-specific knowledge or rely on ground truth as few-shot samples. To address the above limitations, we propose a novel approach called Progressive Retrieval Augmented Generation (P-RAG), which not only effectively leverages the powerful language processing capabilities of LLMs but also progressively accumulates task-specific knowledge without ground-truth. Compared to the conventional RAG methods, which retrieve relevant information from the database in a one-shot manner to assist generation, P-RAG introduces an iterative approach to progressively update the database. In each iteration, P-RAG retrieves the latest database and obtains historical information from the previous interaction as experiential references for the current interaction. Moreover, we also introduce a more granular retrieval scheme that not only retrieves similar tasks but also incorporates retrieval of similar situations to provide more valuable reference experiences. Extensive experiments reveal that P-RAG achieves competitive results without utilizing ground truth and can even further improve performance through self-iterations.
Abstract:Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses, leading to the sycophancy issue. When challenged by users, LLMs tend to admit mistakes and provide inaccurate responses even if they initially provided the correct answer. Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue, while it typically leads to the degeneration of LLMs' general capability. To address the challenge, we propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective. Specifically, SPT first reveals and verifies a small percentage (<5%) of the basic modules, which significantly affect a particular behavior of LLMs. i.e., sycophancy. Subsequently, SPT merely fine-tunes these identified modules while freezing the rest. To verify the effectiveness of the proposed SPT, we conduct comprehensive experiments, demonstrating that SPT significantly mitigates the sycophancy issue of LLMs (even better than SFT). Moreover, SPT introduces limited or even no side effects on the general capability of LLMs. Our results shed light on how to precisely, effectively, and efficiently explain and improve the targeted ability of LLMs.
Abstract:Over the past few years, the advancement of Multimodal Large Language Models (MLLMs) has captured the wide interest of researchers, leading to numerous innovations to enhance MLLMs' comprehension. In this paper, we present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions. We hypothesize that the requisite number of visual tokens for the model is contingent upon both the resolution and content of the input image. Generally, natural images with a lower information density can be effectively interpreted by the model using fewer visual tokens at reduced resolutions. In contrast, images containing textual content, such as documents with rich text, necessitate a higher number of visual tokens for accurate text interpretation due to their higher information density. Building on this insight, we devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images. This method mitigates distortion effects that arise from resizing images to a uniform resolution and dynamically optimizing the visual tokens input to the LLMs. Our model is capable of processing images with resolutions up to $1008\times 1008$. Extensive experiments across various datasets demonstrate that our method achieves impressive performance in handling vision-language tasks in both natural and text-related scenes. The source code and dataset are now publicly available at \url{https://github.com/harrytea/AdaptVision}.
Abstract:In video lane detection, there are rich temporal contexts among successive frames, which is under-explored in existing lane detectors. In this work, we propose LaneTCA to bridge the individual video frames and explore how to effectively aggregate the temporal context. Technically, we develop an accumulative attention module and an adjacent attention module to abstract the long-term and short-term temporal context, respectively. The accumulative attention module continuously accumulates visual information during the journey of a vehicle, while the adjacent attention module propagates this lane information from the previous frame to the current frame. The two modules are meticulously designed based on the transformer architecture. Finally, these long-short context features are fused with the current frame features to predict the lane lines in the current frame. Extensive quantitative and qualitative experiments are conducted on two prevalent benchmark datasets. The results demonstrate the effectiveness of our method, achieving several new state-of-the-art records. The codes and models are available at https://github.com/Alex-1337/LaneTCA
Abstract:Sign language serves as the primary meaning of communication for the deaf-mute community. Different from spoken language, it commonly conveys information by the collaboration of manual features, i.e., hand gestures and body movements, and non-manual features, i.e., facial expressions and mouth cues. To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied in recent years, including isolated/continuous sign language recognition (ISLR/CSLR), gloss-free sign language translation (GF-SLT) and sign language retrieval (SL-RT). Sign language recognition and translation aims to understand the semantic meaning conveyed by sign languages from gloss-level and sentence-level, respectively. In contrast, SL-RT focuses on retrieving sign videos or corresponding texts from a closed-set under the query-by-example search paradigm. These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos. To advance the development of sign language understanding, exploring a generalized model that is applicable across various SLU tasks is a profound research direction.
Abstract:Shadow detection is a fundamental and challenging task in many computer vision applications. Intuitively, most shadows come from the occlusion of light by the object itself, resulting in the object and its shadow being contiguous (referred to as the adjacent shadow in this paper). In this case, when the color of the object is similar to that of the shadow, existing methods struggle to achieve accurate detection. To address this problem, we present SwinShadow, a transformer-based architecture that fully utilizes the powerful shifted window mechanism for detecting adjacent shadows. The mechanism operates in two steps. Initially, it applies local self-attention within a single window, enabling the network to focus on local details. Subsequently, it shifts the attention windows to facilitate inter-window attention, enabling the capture of a broader range of adjacent information. These combined steps significantly improve the network's capacity to distinguish shadows from nearby objects. And the whole process can be divided into three parts: encoder, decoder, and feature integration. During encoding, we adopt Swin Transformer to acquire hierarchical features. Then during decoding, for shallow layers, we propose a deep supervision (DS) module to suppress the false positives and boost the representation capability of shadow features for subsequent processing, while for deep layers, we leverage a double attention (DA) module to integrate local and shifted window in one stage to achieve a larger receptive field and enhance the continuity of information. Ultimately, a new multi-level aggregation (MLA) mechanism is applied to fuse the decoded features for mask prediction. Extensive experiments on three shadow detection benchmark datasets, SBU, UCF, and ISTD, demonstrate that our network achieves good performance in terms of balance error rate (BER).
Abstract:Different from traditional video retrieval, sign language retrieval is more biased towards understanding the semantic information of human actions contained in video clips. Previous works typically only encode RGB videos to obtain high-level semantic features, resulting in local action details drowned in a large amount of visual information redundancy. Furthermore, existing RGB-based sign retrieval works suffer from the huge memory cost of dense visual data embedding in end-to-end training, and adopt offline RGB encoder instead, leading to suboptimal feature representation. To address these issues, we propose a novel sign language representation framework called Semantically Enhanced Dual-Stream Encoder (SEDS), which integrates Pose and RGB modalities to represent the local and global information of sign language videos. Specifically, the Pose encoder embeds the coordinates of keypoints corresponding to human joints, effectively capturing detailed action features. For better context-aware fusion of two video modalities, we propose a Cross Gloss Attention Fusion (CGAF) module to aggregate the adjacent clip features with similar semantic information from intra-modality and inter-modality. Moreover, a Pose-RGB Fine-grained Matching Objective is developed to enhance the aggregated fusion feature by contextual matching of fine-grained dual-stream features. Besides the offline RGB encoder, the whole framework only contains learnable lightweight networks, which can be trained end-to-end. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods on various datasets.